
Generalized Labeling Problems with a Majority Polymorphism for a Certain
Class of Semirings

Vodolazskiy Evgeniy

Department of Image Processing and Recognition
IRTC ITS

waterlaz@gmail.com

Abstract

The article describes a generalization of a constraint satis-
faction problem and its max-min relaxation. The general
problem is defined in terms of a commutative semiring
and considers a special case of semirings with idempotent
operations. The concept of polymorphism is generalized
for this special case and the polynomial time algorithm
for problems with a majority polymorphism is described.

1. Introduction
This article generalizes the idea of using polymorphisms
to define tractable subclasses of NP-complete problems
[1] and is a direct generalization of algorithms and theo-
rems for max-min labeling problems [2] to commutative
semirings with idempotent operations.

2. Notation
The article talks about commutative semirings (⊕,⊗, S).
The symbol ⊗ is omitted in most of the formulas, so in-
stead of a⊗ b we use ab. When writing addition or multi-
plication operations over some sets, the set may be omit-
ted. For instance, one might find the expression

⊗
x

in-

stead of
⊗
x∈X

in the article. Hopefully, the set is obvious

from the context.

3. Problem formulation
A lot of problems can be formulated in terms of a general
labeling problem on a commutative semiring.

Definition 1. The general labeling problem on a commu-
tative semiring (⊕,⊗, S) is a quadruple

〈
X,T,τ ⊂ 2T ,

(
fT ′ : XT ′ → S|T ′ ∈ τ)

〉
,

where T is a finite set of variables, X is a finite set of
variables’ values, fT ′ , T ′ ∈ τ , are functions. It is nec-
essary to compute the value

⊕
x∈Xk

⊗
T ′∈τ

fT ′(x(T ′)) for a

given problem.

There are two practical special cases of this problem:
a constraint satisfaction problem and a max-min labeling
problem.

3.1. Constraint satisfaction problem

A constraint satisfaction problem[3, 4] is a labeling prob-
lem on a semiring

(∨
,&, {0, 1}). Functions fT ′ de-

fine constraints on subsets of variables T ′. Comput-
ing

⊕
x∈Xk

⊗
T ′∈τ

fT ′(x(T ′)) =
∨

x∈Xk
&

T ′∈τ
fT ′(x(T ′)) is

equivalent to determining if one can assign values x∗ to
variables that fulfill all the constraints fT ′(x∗(T ′)) =
1, T ′ ∈ τ . In other words, it is necessary to solve a sys-
tem of Boolean equations. The values x∗ are called a
solution to the constraint satisfaction problem. Note that
a general labeling problem in Definition 1 does not define
a concept of a solution.

3.2. A max-min labeling problem

Sometimes a constraint satisfaction problem may not
have a solution. In this case one might want to find some
sort of relaxed solution by relaxing the constraints so that
each constraint has a grade of satisfiability. The solution
to a max-min labeling problem are such variables’ values
x∗ that make all the constraints as much satisfied as pos-
sible [2]. In other words, to find such x∗ that maximizes
the value min

T ′∈τ
fT ′(x(T ′)). This is equivalent to solving

the labeling problem on a semiring (max,min,R).

Both the constraint satisfaction problem and the max-
min labeling problem are NP-complete. We will show
a tractable subclass of the general labeling problem for
commutative semirings (⊕,⊗, S) with idempotent oper-
ations ⊕ and ⊗, that is a ⊕ a = a and aa = a. Ev-
idently, both

(∨
,&, {0, 1}) and (max,min,R) fulfill

these rules.

The tractable subclass of problems will be defined
in the following sections using the concept of polymor-
phism.

4. Polymorphisms and invariants
Throughout the paper we talk about functions fT ′ :
XT ′ → S that are sometimes called constraints. In or-
der to define the concept of polymorphisms we introduce
the functions p : X×X×X → X that we call operators.
Purely for convenience purposes we extend the operators
on triples of values p : X ×X ×X → X to operators on
triples of tuples p : Xk ×Xk ×Xk → Xk by applying
the operator p element-wise.

p(x, y, z) =

=
(
p(x1, y1, z1), p(x2, y2, z2), . . . , p(xk, yk, zk)

)
,

Definition 2. An operator p : X×X×X → X is a poly-
morphism of a function f : Xk → S (or f is invariant
by p) if and only if the equality

f(x)f(y)f(z)⊕ f
(
p(x, y, z)

)
= f

(
p(x, y, z)

)
(1)

holds for all x, y, z ∈ Xk.

The set of all polymorphisms of a function f is de-
noted by Pol{f}. The set of all functions invariant by p
is denoted by Inv{p}.

If there is an operator p such that p is a polymorphism
of all problem’s constraint functions then we say that this
problem has a polymorphism p.

The Definition 2 is a direct generalization of the
classical definition of a polymorphism [1, 3, 5, 6] de-
fined for a semiring

(∨
,&, {0, 1}). Indeed, the expres-

sion (1) becomes f(x)& f(y)& f(z) ∨ f
(
p(x, y, z)

)
=

f
(
p(x, y, z)

)
and is equivalent to f(x)& f(y)& f(z) →

f
(
p(x, y, z)

)
.

Polymorphisms on semirings with idempotent op-
erations have two remarkable properties as shown by
Lemma 1 and Lemma 2.

Lemma 1. Let f : Xk → S and g : Xk → S be
two functions invariant by the same operator p. Then the
function (f ⊗ g)(x) = f(x) ⊗ g(x) is also invariant by
the operator p.

Proof.

f(p(x, y, z))g(p(x, y, z)) =

=
[
f(x)f(y)f(z)⊕ f(p(x, y, z))

]
⊗ (2)

⊗
[
g(x)g(y)g(z)⊕ g(p(x, y, z))

]
=

=
[
f(x)f(y)f(z)⊕ f(p(x, y, z))

]
⊗ (3)

⊗
[
g(x)g(y)g(z)⊕ g(p(x, y, z))

]
⊕

⊕ f(x)g(x)f(y)g(y)f(z)g(z) =

=
[
f(x)g(x)

][
f(y)g(y)

][
f(z)g(z)

]⊕ (4)
⊕ f(p(x, y, z))g(p(x, y, z)).

Equation (2) is obtained by applying (1). If one
opens the brackets in (2) one of the summands will be
f(x)g(x)f(y)g(y)f(z)g(z). Therefore, we can add this
summand once more and it won’t change the value of the
sum due to idempotency of ⊕. Finally, we obtain (4) by
applying (1) once again.

Definition 3. A function fXn : Xn → S is called a pro-
jection of a function f : Xn ×Xm → S into n variables
if and only if fXn(x) =

⊕
y∈Xm

f(x, y).

Lemma 2. If a function f : Xn ×Xm → S is invariant
by some operator p then its projection to n variables g :
Xn → S is also invariant by p.

Proof.
[⊕

t1

f(x, t1)
][⊕

t2

f(y, t2)
][⊕

t3

f(z, t3)
]
⊕

⊕
⊕

t

f(p(x, y, z), t) =

=
⊕

t1

⊕

t2

⊕

t3

f(x, t1)f(y, t2)f(z, t3)⊕ (5)

⊕
⊕

t

f(p(x, y, z), t) =

=
⊕

t1

⊕

t2

⊕

t3

[
f(x, t1)f(y, t2)f(z, t3)⊕ (6)

⊕ f
(
p(x, y, z), p(t1, t2, t3)

)]⊕
⊕
⊕

t

f(p(x, y, z), t) =

=
⊕

t1

⊕

t2

⊕

t3

f
(
p(x, y, z), p(t1, t2, t3)

)⊕ (7)

⊕
⊕

t

f(p(x, y, z), t) =

=
⊕

t

f(p(x, y, z), t). (8)

In equation (5) we simply opened brackets. Since the
summand f

(
p(x, y, z), p(t1, t2, t3)

)
is already present in

the sum
⊕
t

f(p(x, y, z), t) for any t1, t2, t3 ∈ X we can

add it once more and the equality (6) will be valid due
to ⊕ being idempotent. Since p is a polymorphism of
f , equality (7) holds. Equality (8) is valid for the same
reasons (6) is.

5. Majority polymorphism
We consider a special type of polymorphisms called ma-
jority polymorphism.

Definition 4. An operator p : X×X×X → X is called
a majority operator if and only if for any x, y ∈ X

p(x, x, y) = p(x, y, x) = p(y, x, x) = x. (9)

Majority polymorphisms on a semiring with idempo-
tent operations have one very useful property.

Lemma 3. Any function f of three or more variables in-
variant by a majority operator p can be expressed as a
product of three functions of less variables. Moreover,
these three functions are also invariant by p.

Proof. We prove that any function f(x, y, z) of three sets
of variables x ∈ Xk, y ∈ Xm, z ∈ Xn can be expressed
as a product of three projections.

f(x, y, z) =

=
⊕

x1∈Xk

f(x1, y, z)
⊕

y1∈Xm

f(x, y1, z)

⊕
z1∈Xn

f(x, y, z1). (10)

Indeed,
⊕
x1

f(x1, y, z)
⊕
y1

f(x, y1, z)
⊕
z1

f(x, y, z1) =

=
⊕
x1

⊕
y1

⊕
z1

f(x1, y, z)f(x, y1, z)f(x, y, z1) =

=
⊕
x1

⊕
y1

⊕
z1

[
f(x1, y, z)f(x, y1, z)f(x, y, z1)⊕

(11)

⊕ f
(
p(x1, x, x), p(y, y1, y), p(z, z, z1)

)]
=

=
⊕
x1

⊕
y1

⊕
z1

f
(
p(x1, x, x), p(y, y1, y), p(z, z, z1)

)
=

(12)

=
⊕
x1

⊕
y1

⊕
z1

f(x, y, z) = f(x, y, z) (13)

Since p is a majority operator, the triple(
p(x1, x, x), p(y, y1, y), p(z, z, z1)

)
equals (x, y, z).

The summand f(x, y, z) is already present in the sum.
Therefore, we can add it one more time in the form of
f
(
p(x1, x, x), p(y, y1, y), p(z, z, z1)

)
and the sum will

not change. Hence, equality (11) is valid. We obtain (12)
by using (1). Finally, (13) is valid due to idempotency
of addition. Note that due to Lemma 2 each of the three
functions are invariant by p.

Lemma 3 results in the following theorem.

Theorem 1. Any function f : Xk → S invariant by
a majority operator p can be expressed as a product of
functions of two variables.

f(x) =
⊗

i,j∈1,k

fij(xi, xj), fij(xi, xj) =
⊕

y:yi=xi
yj=xj

f(y).

Each of these functions are projections of f and are in-
variant by operator p.

Proof. According to Lemma 2 the function f can be bro-
ken into three functions of less variables. Since f is in-
variant by p each of these functions is also invariant by
p and in turn can be broken into functions of less vari-
ables. We can repeat this process until we obtain func-
tions of two variables invariant by the majority operator
p. If there are more than one function that depends on the
same pair of variables then these functions are replaced
by their product according to Lemma 1.

Theorem 1 allows to transform any given problem
with a majority polymorphism into a problem with the
same polymorphism with all constraint functions depend-
ing only on two variables.

6. Star to simplex transformation and
variable exclusion

Similarly to [2], the main procedure of the algorithm to
solve a general labeling problem with a majority poly-
morphism is a star to simplex transformation that works
with constraint functions of two variables. Figure 1
shows an example of this transformation with variables
shown as circles and constraint functions of two variables
are shown as lines connecting these circles. A star is
a set of variables with one center variable and a set of
constraint functions such that each function depends on a
center variable and some other variable. All variables that
are not a center variable are called rays. A star to simplex
transformation replaces these constraint functions by an
equivalent set of functions that do not depend on a center
variable.

Figure 1: Star to simplex transformation.

Let a set of variables T and a center variable t∗ form
a star. The star to simplex transformation is a transforma-
tion of the set of constraints ft∗t, t ∈ T , to an equivalent
set of constraints ft1t2 , t1, t2 ∈ T . In other words

⊕
x∗

⊗
t∈T

ft∗t(x
∗, x(t)) =

⊗
t1∈T
t2∈T

ft1t2(x(t1), x(t2)). (14)

This is a direct generalization of a star to simplex trans-
formation defined for a (max,min,R) semiring [2].

Since
⊕
x∗

⊗
t∈T

ft∗t(x
∗, x(t)) is a projection of

⊗
t∈T

ft∗t(x
∗, x(t)), it is invariant by a majority operator

according to Lemmas 1 and 2. Therefore, we can trans-
form these constraint functions into ft1t2 by choosing

ft1t2 to be projections of
⊕
x∗

⊗
t∈T

ft∗t(x
∗, x(t)) to pairs of

variables t1, t2 according to Theorem 1.

ft1t2(x(t1), x(t2)) =

=
⊕

x∈XT\{t1,t2}

⊕
x∗

⊗
t∈T

ft∗t(x
∗, x(t)). (15)

Let us denote ϕt(x
∗) =

⊕
x∈X

ft∗t(x
∗, x). Then (15)

becomes

ft1t2(x(t1), x(t2)) =

=
⊕
x∗

⊗
t�=t1
t�=t2

ϕt

(
x∗)ft∗t1

(
x∗, x(t1)

)
ft∗t2

(
x∗, x(t2)

)
=

=
⊕
x∗

[
ft∗t1

(
x∗, x(t1)

)
ft∗t2

(
x∗, x(t2)

)⊗
⊗
t�=t1
t�=t2

ϕt

(
x∗)].

All values ϕt(x
∗) can be computed in O(|T ||X |2)

time. A naive approach to computing each
ft1t2(x(t1), x(t2)) requires O(|T ||X |) time or
O(|T |3|X |3) in total. Fortunately, a rather standard
trick allows to reduce this time to O(|T |2|X |3). Assume
that the set T is ordered T = {t1, t2, . . . , tn} (the
specific order is irrelevant).

⊗
t�=ta
t�=tb

ϕt

(
x∗) =

=
a−1⊗
i=1

ϕti

(
x∗)⊗

b−1⊗
i=a+1

ϕti

(
x∗)⊗

n⊗
i=b+1

ϕti

(
x∗) =

= q(1, a− 1, x∗)⊗ q(a+1, b− 1, x∗)⊗ q(b+1, n, x∗),

where q(a, b, x∗) =
b⊗

i=a

ϕti

(
x∗) and all q’s can be com-

puted in O(|T |2|X |) by using dynamic programming.
Then it takes only O(|X |) time to compute each f .

The star to simplex transformation produces a con-
straint function invariant by a majority operator for each
pair of variables. The procedure of excluding a variable
from the problem proceeds as follows:

1. Choose a variable and all the constraint functions
that depend on this variable. This variable will be-
come the center of the star. All other variables that
the chosen functions depend from are the rays of
the star.

2. Use the star to simplex transformation to replace
the chosen restriction functions with functions that
depend only on the rays.

3. If the original problem had a restriction function
for any two rays then multiply it by the function ob-
tained with a star to simplex transformation. Other-
wise, just use the function from the transformation.

The algorithm for solving a general labeling problem
proceeds by excluding one variable at a time until

the problem has three or less variables. Let these
variables be numbered 1, 2, 3 and let f12, f13, f23 be
constraint functions over these variables. Then the
answer is obtained by directly computing the formula⊕
x1∈X

⊕
x2∈X

⊕
x3∈X

f12(x1, x2)f13(x1, x3)f23(x2, x3).

Since the exclusion procedure is performed O(|T |)
times, the algorithm computes

⊕
x∈XT

⊗
T ′∈τ

fT ′(x(T ′))

for any given problem with a majority polymorphism in
O(|T |3|X |3) time.

Note that determining whether some problem has a
majority polymorphism may turn out to be a complex
task. The advantage of the proposed algorithm is that
one does not have to know the polymorphism. If the
polymorphism exists, the algorithm computes the correct
value

⊕
x∈XT

⊗
T ′∈τ

fT ′(x(T ′)) without knowing or com-

puting the polymorphism itself.

7. Conclusions
A generalized labeling problem on a commutative semir-
ing with idempotent operations (both multiplication and
addition) that has a majority polymorphism can be re-
duced to a problem with the same polymorphism and re-
striction functions that depend only on two variable. The
latter problem can be solved in O(|T |3|X |3) time by the
proposed algorithm.

8. References
[1] A. Bulatov and P. Jeavons, “Tractable constraints

closed under a binary operation” Technical Re-
port PGR-TR-12-00 (Oxford University Computing
Laboratory, Oxford, 2000).

[2] Vodolazskii, E.V., Flach, B. and Schlesinger, M.I.,
“Minimax problems of discrete optimization in-
variant under majority operators”, Computational
Mathematics and Mathematical Physics, Num. 8,
Vol. 54:1327-1336, 2014.

[3] F. Rossi, P. van Beek, and T. Walsh, “Handbook of
Constraint Programming” (Elsevier Science, New
York, 2006).

[4] O. A. Shcherbina, “Constraint satisfaction and con-
straint programming” Intellekt. Sist. 15(14), 53170
(2011).

[5] A. Bulatov, “Tractable conservative constraint sat-
isfaction problems” Proceedings of the 18th Annual
IEEE Symposium on Logic in Computer Science
LICS03 (Washington, DC, USA, 2003).

[6] A. Bulatov, “Complexity of conservative constraint
satisfaction problems” ACM Trans. Comput. Logic
12(4), 24:124:66, July (2011)

