
Reasoning by analogy for fact extraction

Serge V. Slipchenko

Department of Neural Information Processing Technologies
International Research and Training Center for

Information Technologies and Systems
Serge.Slipchenko@gmail.com

Abstract

Method of fact extraction based on reasoning by analogy with
binary distributed representations is proposed. Details of
building binary distributed representations and application of
reasoning by analogy for typed-dependency trees outlined.

1. Introduction

Automatic knowledge extraction from natural language texts is
an important direction of computer linguistics and artificial
intelligence research. In conditions of fast development of
global Internet network and growing amount of available
documents manual search and processing of information
require huge human and financial resources. Yet only a small
fraction of information is processed. Therefore interest to
automatic knowledge extraction from natural language texts
keeps growing. Examples of knowledge of interest are
descriptions of geo-politic events [1], results in bio-molecular
research [2], or object relationships in news [3].

Models and methods that are used for relation extraction
vary from simple classification models (e.g., combination of
CRF and Bayesian rules [1], or SVM with kernels on
dependency trees [2]) to complex probabilistic graphical
models (e.g., Markov Logic [3] that combines Markov
networks and first-order logic calculus).

The proposed approach is a development of ideas and
methods of case-based reasoning [4-7], which are
characterized by:

• Use of a sample database to build inferences that allows
simple interpretation of the inference process.

• Use of binary distributed representations of a probe and
the samples that in contrast to logical and non-distributed
models allow fast and effective parallel lookup of
samples from the database.

Methods that are based on binary distributed
representations were used successfully in modeling reasoning

by analogy [4-6], but text descriptions of samples were
formalized by experts and rewritten to structured machine-
readable descriptions [7,8]. Automatic construction of
structured machine-readable descriptions is the open research
topic. This work focuses on simple fact extraction (much like
the related works [1-3]), but is using methods of reasoning by
analogy [4-6].

2. Fact extraction

This work is using Stanford typed-dependencies “trees”,
which really are Direct Acyclic Graphs (DAG) that are
obtained by preprocessing constituency-based parsing tree
[9]. Similar preprocessing is used to build syntactic relations
in classification [2] and probabilistic graphical models [3].

2.1. Typed-dependencies and matching relations

Typed-dependency trees represent syntactic and semantic
relations of words in a sentence (terminals only), while
constituency-based parsing tree creates new non-terminal
entities to represent the syntactic structure (see Figure 1 for
details). Typed-dependencies are represented by triples
name (governing word, dependent word). E.g., for the
sentence “Bills on ports and immigration were submitted by
Senator Brownback, Republican of Kansas” we have the
following triples: nsubjpass(submitted,Bills),
auxpass (submitted,were), agent(submitted,Brownback),
nn(Brownback,Senator), appos(Brownback,Republican),
prep_of(Republican,Kansas), prep_on(Bills,ports),
conj_and(ports,immigration) and prep_on(Bills,immigration).

The key benefit of typed-dependency trees for domain
experts is a natural representation of relations by graph
fragments, e.g. for the relation submit('Brownback', 'Bills on
ports and immigration') name is the general form of verb
submitted, and object 'Brownback' and subject 'Bills on ports
and immigration' are direct dependents of the verb. Therefore
the problem of relation extraction can be stated as matching of
probe graph fragments to sample graph fragments [2].

a

b

Figure 1: Typed-dependency (a) and constituent-based (b) parse trees

Unfortunately, the complexity of the matching for the
dependency tree kernel [2] is O (mn3), where m – number of
nodes in the probe, n – number of nodes in the sample.

2.2. Binary distributed representations

Graph embeddings in vector spaces [10-11] allows to cope the
complexity problem by replacing an expensive graph
similarity function with cheap vector similarity functions.

Binary distributed representations employ a similar
vector-based approach to graph matching problem. Any graph
element (node, edge or subgraph) is represented by a binary

vector N}1,0{∈X with a large number of elements N ,

but only a small fraction of non-zero elements 2
1<<N

M .

Similar items should have similar binary representations,
whereas items with undefined similarity have dissimilar
representations [4]. The measure of similarity is dot product
of binary representations

 ∑
=

=
Ni

iiYX
,1

),(YX (1)

 In the context of the graph matching we expect that
similar subgraphs should have similar binary representations.
This is an ill posed problem because there is no “good”
theoretical measure of graph similarity like subgraph
isomorphism or maximum common subtree that corresponds
to the expert notion of graph similarity in the text mining
domain.

Proper definition of the similarity measure should employ
some learning process, but this definition is beyond the scope
of this work.

2.3. Context-Dependent Thining

Binary distributed representations use unique random binary
vectors to represent dissimilar atomic items. Complex items
are built from atomic items using context-dependent thinning
procedure (CDT) that applies to the set of binary vectors
{ A,B,…} and creates a new binary vector 〈A,B,..〉. CDT has
properties that are important for building binary
representations of graphs (see [12] details):

• Binary vectors of similar sets are similar:
〈A,B,C〉 ≈ 〈A,B,C〉.

• Binary vectors of dissimilar subsets are dissimilar:
〈〈A,B〉,C〉 ≠ 〈A,〈B,C〉〉.

Algorithm of the context-dependent thinning is the
following:

1. The binary disjunction of the input vectors {Xi} is
built:

ini XZ ,1=∨= (2)

2. Binary conjunctions of the vector Z and its

permutation
kZ

~
combined K times:

)
~

(,1 kKk ZZZ ∧∨= = . (3)

2.4. Binary distributed representations of typed-
dependencies

Stanford typed-dependencies “trees” are Direct Acyclic
Graphs (DAG). The structure of a typed-dependency graph is
quite similar to the structured analog descriptions [4] that
allows to use the modified “role-filler” scheme.

Structured analog description graph nodes represent
relations, attributes and entities. The ordering of relation node
children imposes implicit edge labels. Typed-dependency
graph nodes represent words that may represent relations,
attributes and entities, but there is no direct mapping. In
order to overcome formalization difficulties the following
procedure is proposed:

1. Create a unique binary random vector for every word
in the vocabulary. E.g., Vw(submitted), Vw(bills), etc.

2. Create a unique binary random vector for every
unique named entity in the sentence. E.g.,
Vw(Brownback), Vw(Kansas), etc.

3. Create a unique binary random vector for governor
dep
dependencyV and dependant gov

dependencyV roles for

every dependency relation dependency. E.g.,
dep
agentV , gov

agentV ,etc.

4. Use CDT procedure to build a representation of the
dependency relation:

dep

gov

depgov

n
dep
dependency

w
gov
dependency

dependency
nw

VV

VV

V

∨

∨

∨

= ,
 (4)

where
govwV - random vector of the governing

word,
depnV - CDT vector of the dependent node.

E.g,

)(

)(

)(),(

Brownbackn
dep
agent

submittedw
gov
agent

agent
Brownbacknsubmittedw

VV

VV

V

∨

∨

∨

=

5. Use disjunction of dependency relation

representations to build a representation of the
governing node. E.g.,

nsubjpass
Brownbacknsubmittedw

nsubjpass
Billsnsubmittedwsubmittedn)(),()(),()(VVV ∨=

The proposed procedure builds a binary representation of

the sentence typed-dependency graph that is used for fast sub-
linear lookup of similar sentences in the sample database.
General type kernels return valuable output for similar and
dissimilar instances, but tree kernel functions for relation
extraction [2] return a normalized, symmetric similarity score
in range [0,1]. Dissimilar trees have zero score. Therefore, we
can optimize tree kernel evaluation process by limiting it to
the similar instances only.

It can be the simple threshold strategy:

 }),(:{ θ>pss VV , (5)

where sV - sample vector, pV - probe vector, θ - threshold.

Or the adaptive threshold strategy:

 }
),(

),(),(
:{

* θ>
−

ps

pspss
VV

VVVV
, (6)

where *s
V - sample with the highest score.

2.5. Matching typed-dependency graph fragments

There are two kinds of the node similarity in typed-
dependency graphs:

• The similarity of the dependant sub-graphs (top-down
similarity), which is discussed in the previous subsection.

• The similarity of the governing sub-graphs (bottom-up
similarity), which haven’t discussed yet.

A simple way to incorporate the bottom-up similarity is to
build the disjunction of the node representation and its
ancestor role representations (see Figure 2 and [5] for details).
However, this approach works only for simple cases, because
it treats all ancestor roles equally and ignores ancestor
representations.

immigration

ports

 conj_and

Bills
 prep_on

 prep_on

submitted

 nsubjpass

Figure 2: Node roles

The modification of steps 4 and 5 of the procedure from
the previous subsection allows to build better representations
for the mapping, but at the cost of higher complexity.

4. Use CDT procedure to build a representation of the
reverse dependency relation:

dep

gov

depgov

w
dep
dependency

m
gov
dependency

dependency
wm

VV

VV

V

∨

∨

∨

= ,
 (5)

where
govmV - random vector of the governing node,

depwV - CDT vector of the dependent word. E.g,

)(

)(

)(),(

Brownbackw
dep
agent

submittedm
gov
agent

agent
Brownbackwsubmittedm

VV

VV

V

∨

∨

∨

=

5. Use disjunction of reverse dependency relation

representations to build a representation of the
dependent node. E.g.,

nsubjpass
BrownbackwsubmittedmBrownbackm)(),()(VV =

Aggregate similarity of graph fragments is a linear

combination of the top-down and bottom-up similarities:

),(),(),()()()()(ymxmynxnyxsim VVVV βα += (6)

where)(xnV and)(ynV - top-down binary representations of

nodes x and y,)(xmV and)(ymV - top-down binary

representations of nodes x and y, α and β - weighting

factors.

2.6. Fact extraction

Facts are defined as entity relations of the sentence. All
sentences from the sample database contain typed-dependency
tree augmented with relation edges. Probe doesn’t have
relation edges. Procedure of the fact extraction is the
following:

1. A sample with maximum similarity with the probe is
extracted from the database:

),(maxarg*)()(pnsn
Ss

s VV
∈

=

where S – samples database,)(snV - sample top-down node

vector,)(pnV - probe top-down node vector. Top nodes of p

and s added to match node set {(p,s)}
2. Child nodes of the current matched nodes are greedy

matched by maximum similarity and added to match
node set.

3. Relation edges between nodes in the sample
transferred to matched nodes in the probe.

3. Related work

There are models and methods of distributed representation for
encoding data structures in vectors, matrices, or high-order
tensors. However, vector representation is the most promising
from the computational point of view (see [4]).

Distributed Tree Kernels [14-15] use the following
definition of the distributed vector representing the subtrees
of tree T:

 ∑
∉

=
)(

)(
~

TNn

nsT , (7)

where N(T) – set of nodes of the tree T, n – node, s(n) – sum
of the distributed vectors of the subtrees of T rooted in node
n. The function s(n) is recursively defined as follows:

• wn ⊗=)(ns if n is a pre-terminal node wn → ,

where n – vector representing the node n, w – vector
representing the word w.

•))(())(()(11 nn cscsns +⊗⊗+⊗= ccn K
 if

n is not a pre-terminal node
nccn ,,1 K→ , where

ncc ,,1 K - vectors of the child nodes ncc ,,1 K .

The binding function ⊗ is either the reverse element-wise

product bav ⊗= :

1+−= inii bav γ , (8)

(where iv , ia and 1+−inb - elements of the corresponding

vectors, γ - normalization factor), or discrete vector

convolution [13].

Two types of Distributed Tree Kernels are proposed [14-
15]:

• Pure Distributed Tree Kernels that use random vectors
with elements drawn independently from a normal
distribution N(0,1).

• Distributional Distributed Tree Kernels that use LSA
word vectors obtained from a large text corpus.

To reduce the computational complexity of distributed
tree kernels, an embedding scheme is proposed [15].

4. Conclusions

Binary distributed representation of structured data allows
easy estimation of the complex object similarity and effective
parallel implementation. However, a new representation and
matching scheme for any new problem needs to be developed.

Binary distributed representation scheme for typed-
dependency representation is proposed, and retrieval and
matching procedures are outlined. Experimental evaluation
showed that that using of binary distributed representations
for fact extraction is possible, but random word vectors fail to
capture the word similarity and distributional binary
representations of the word vectors need to be developed in
order to incorporate distributional word semantic.
Distributional Distributed Tree Kernels use LSA vectors to
capture the word similarity, but LSA real-valued vectors do
not apply to the binary distributed representation schema.
Experimental evaluation of the randomized projective
methods for construction of binary sparse vector
representations [16] is needed.

5. References

[1] Radinsky K. and Horvitz E., “Mining the Web to Predict
Future Events”, Proc. of International Conference on
Web Search and Data Mining, 255-264, 2013.

[2] Culotta A. and Sorensen J., “Dependency Tree Kernels
for Relation Extraction”, Proc. of the 42nd Annual
Meeting on Association for Computational Linguistics,
2004.

[3] Poon H. and Vanderwende L. “Joint Inference for
Knowledge Extraction from Biomedical Literature”,
Proc. of Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics, 813-821, 2009.

[4] Rachkovskij D.A. and Slipchenko S. V., “Similarity-
Based Retrieval with Structure Sensitive Sparse Binary
Distributed Representations”, Computational
Intelligence, 28(1), 106-129, 2012.

[5] Slipchenko S.V. and Rachkovskij D.A., “Analogical
mapping using similarity of binary distributed
representations”, Information Theories and
Applications, 16(3), 269-290, 2009.

[6] Slipchenko S.V. and Rachkovskij D.A., “Mapping and
inference by analogy based on neural distributed
representations”, Proc. of Knowledge-Dialogue
Conference, 9, 95-101, 2009.

[7] Forbus K.D., Gentner D. and Law K., “MAC/FAC: A
model of similarity-based retrieval”, Cognitive Science,
19(2), 141-205, 1995.

[8] Falkenhainer B., Forbus K.D. and Gentner D., “The
Structure-Mapping Engine: Algorithm and Examples”,
Artificial Intelligence, 41, 1-63, 1989.

[9] De Marneffe M.-C. and Manning C.D., “The Stanford
typed dependencies representation”, Proc. of COLING
Workshop on Cross-framework and Cross-domain Parser
Evaluation, 1-8, 2008.

[10] Wilson R.C., Hancock E.R. and Luo B., “Pattern vectors
from algebraic graph theory”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 27(7), 1112-
1124, 2005.

[11] Riesen K., Neuhaus M. and Bunke H., “Graph
embedding in vector spaces by means of prototype
selection”, Graph-Based Representations in Pattern
Recognition (Lecture Notes in Computer Science), 4538,
383-393, 2007.

[12] Rachkovskii D. A.,Slipchenko S. V., Kussul' E. M. and
Baidyk T. N., “A Binding Procedure for Distributed
Binary Data Representations”, Cybernetics and Systems
Analysis, 41(3), 319-331, 2005.

[13] Plate T., Holographic Reduced Reprsentation, 2003.
[14] Zanzotto F.M. and Dell’Arciprete L., Distributed

structures and distributional meaning, Proc. of the
Workshop on Distributional Semantics and
Compositionality, 10–15, 2011.

[15] Zanzotto F.M. and Dell’Arciprete L., Distributed Tree
Kernels, Proc. of International Conference on Machine
Learning, 193-200, 2012.

[16] Rachkovskij D.A., Misuno I.S. and Slipchenko S.V.
Randomized projective methods for construction of
binary sparse vector representations, Cybernetics and
Systems Analysis, 48(1), 146-156, 2012.

