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Abstract

Method of fact extraction based on reasoning byogyawith
binary distributed representations is proposed.aiRetof
building binary distributed representations andliappon of
reasoning by analogy for typed-dependency tredmedt

1. Introduction

Automatic knowledge extraction from natural langeidexts is
an important direction of computer linguistics aadificial
intelligence research. In conditions of fast depeient of
global Internet network and growing amount of aaalié
documents manual search and processing of infasmati
require huge human and financial resources. Yet ardmall
fraction of information is processed. Thereforeeiast to
automatic knowledge extraction from natural languaexts
keeps growing. Examples of knowledge of interest ar
descriptions of geo-politic events [1], resultsbin-molecular
research [2], or object relationships in news [3].

Models and methods that are used for relation etibra
vary from simple classification models (e.g., conabion of
CRF and Bayesian rules [1], or SVM with kernels on
dependency trees [2]) to complex probabilistic breal
models (e.g., Markov Logic [3] that combines Markov
networks and first-order logic calculus).

The proposed approach is a development of ideas and
methods of case-based reasoning [4-7], which are
characterized by:

« Use of a sample database to build inferences tlmatsa
simple interpretation of the inference process.

* Use of binary distributed representations of a prahd
the samples that in contrast to logical and notridiged
models allow fast and effective parallel lookup of
samples from the database.

Methods that are based on binary distributed
representations were used successfully in modeéagoning

submitted

by analogy [4-6], but text descriptions of samplesre

formalized by experts and rewritten to structuredchine-
readable descriptions [7,8]. Automatic constructiarf

structured machine-readable descriptions is th@ opsearch
topic. This work focuses on simple fact extract{onuch like

the related works [1-3]), but is using methodseafsoning by
analogy [4-6].

2. Fact extraction

This work is using Stanford typed-dependencies e4ie
which really are Direct Acyclic Graphs (DAG) thatea
obtained by preprocessingonstituency-based parsing tree
[9]. Similar preprocessing is used to build syritactlations
in classification [2] and probabilistic graphicabdels [3].

2.1. Typed-dependencies and matching relations

Typed-dependency trees represent syntactic and nsema
relations of words in a sentence (terminals onkypile
constituency-based parsing tree creates new naomfair
entities to represent the syntactic structure Sgere 1 for
details). Typed-dependencies are represented Ipledri
name (governing word, dependent word}.g., for the
sentenceBills on portsand immigration were submitted by
Senator Brownback, Republican of Kansas’ we have the

following triples: nsubjpasgubmittecBills),
auxpass (submittednvere, agenf{submittecBrownbacl,
nn(BrownbackSenatoy, appogBrownbackRepublica,

prep_ofRepublicarKansasg, prep_orBills,ports),
conj_andportsimmigratior) andprep_or{Bills,immigration.

The key benefit of typed-dependency trees for domai
experts is a natural representation of relations gogph
fragments, e.g. for the relatisubmi{'Brownback Bills on
ports and immigratiof name is the general form of verb
submitted and objectBrownback and subjectBills on ports
and immigratiohare direct dependents of the verb. Therefore
the problem of relation extraction can be stateshatching of
probe graph fragments to sample graph fragments [2]
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Figure 1: Typed-dependency (a) and constituent-dgisgparse trees



Unfortunately, the complexity of the matching fohet
dependency tree kernel [2] is @&if), wherem — number of
nodes in the prob@,— number of nodes in the sample.

2.2. Binary distributed representations

Graph embeddings in vector spaces [10-11] allowfe the
complexity problem by replacing an expensive graph
similarity function with cheap vector similarityriations.

Binary distributed representations employ a similar
vector-based approach to graph matching problem.ghaph
element (node, edge or subgraph) is representead bigary

vector X D{O,]_}N with a large number of elemenfy ,

but only a small fraction of non-zero eIemen'v}zf\I << }/2

Similar items should have similar binary represtoies,
whereas items with undefined similarity have dissim
representations [4]. The measure of similarity @ product
of binary representations

(X,Y)= > XY, (1)
i=LN

In the context of the graph matching we expect tha
similar subgraphs should have similar binary regmestions.
This is an ill posed problem because there is nooty
theoretical measure of graph similarity like sulpgra
isomorphism or maximum common subtree that cormedpo
to the expert notion of graph similarity in the ttamrining
domain.

Proper definition of the similarity measure shoefdploy
some learning process, but this definition is belytite scope
of this work.

2.3. Context-Dependent Thining

Binary distributed representations use unique rantorary
vectors to represent dissimilar atomic items. Compiems
are built from atomic items using context-dependéirtning
procedure (CDT) that applies to the set of binargtaes
{A,B,...} and creates a new binary vect@,B,..). CDT has
properties that are important for building binary
representations of graphs (see [12] details):
e Binary vectors of similar sets
(A,B,C)=(A,B,C).

are similar:

e Binary vectors of dissimilar subsets are dissimilar:
(A,B),C) #(A(B,C)).

Algorithm of the context-dependent thinning is the

following:
1. The binary disjunction of the input vectorXjJ is
built:
Z =0, @

2. Binary conjunctions of the vectoZ and its

permutationz K combinedK times:

2)-

Dex (Z0Z,). ®

24. Binary distributed

dependencies

representations of typed-

Stanford typed-dependencies “trees” are Direct Acyc
Graphs (DAG). The structure of a typed-dependemaply is
quite similar to the structured analog descripti¢ap that
allows to use the modified “role-filler” scheme.

Structured analog description graph nodes represent
relations, attributes and entities. The orderingetdtion node
children imposes implicit edge labels. Typed-depemgy
graph nodes represent words that may represertiorsla
attributes and entities, but there is no direct piagp In
order to overcome formalization difficulties thelléoving
procedure is proposed:

Create a unique binary random vector for every word
in the Vocabulary. E~ng(submitled) VW(bi”S)l etc.

2. Create a unique binary random vector for every
unigue named entity in the sentence. E.g.,
Vw(Brownback) Vw(Kansas) etc.

3. Create a unique binary random vector for governor

dep gov
Vdependencyand dependant\/dependencyroles for
every dependency relationdependency E.g.,
dep gov
\/agent \/agent

4. Use CDT procedure to build a representation of the
dependency relation:

gov
< dependenc;}j V >

| o .
< c?eer?endem))] Vndep>
where ngov - random vector of the governing
word, Vndep - CDT vector of the dependent node.
E.g,

gov
<Vagent D Vw(submitted>
V agent |:|

w(submitted, n(Brownback)
dep
<Vagent D Vn(Brownback)>

5. Use disjunction of dependency relation
representations to build a representation of the
governing node. E.g.,

— V nsubjpass
n(submitted — v w(submitted,n(Bills)

|:| V nsubjpass

V w(submitted,n(Brownback

The proposed procedure builds a binary representati
the sentence typed-dependency graph that is uséalstosub-
linear lookup of similar sentences in the samplélase.
General type kernels return valuable output forilaimand
dissimilar instances, but tree kernel functions felation
extraction [2] return a normalized, symmetric saritly score
in range [0,1]. Dissimilar trees have zero scoteer€fore, we
can optimize tree kernel evaluation process bytilmgiit to
the similar instances only.

It can be the simple threshold strategy:



{s:(Vs,V,)>6} (5)
where V - sample vector,\/p - probe vector @ - threshold.

Or the adaptive threshold strategy:

V5V = (VaY,)

Vv

6. (6)

where VS* - sample with the highest score.

2.5. Matching typed-dependency graph fragments

There are two kinds of the node similarity in typed
dependency graphs:
e The similarity of the dependant sub-graphs (topsuow
similarity), which is discussed in the previous seittion.

* The similarity of the governing sub-graphs (bottom-
similarity), which haven't discussed yet.

A simple way to incorporate the bottom-up similaig to
build the disjunction of the node representatiord dts
ancestor role representations (see Figure 2 anid{%letails).
However, this approach works only for simple cadesause
it treats all ancestor roles equally and ignoresestor
representations.
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Figure 2: Node roles

The modification of steps 4 and 5 of the proceduren
the previous subsection allows to build better espntations
for the mapping, but at the cost of higher compiexi
4. Use CDT procedure to build a representation of the
reverse dependency relation:

gov
<Vdependenc3J] Vn1gov>

dependency: 0 (5)

mgov’Wdep
dep
<Vdependenc3J] deep>

where Vmgov - random vector of the governing node,

V, - CDT vector of the dependent word. E.g,
ep

W
gov
<Vagent D Vm(submittec) >
V agent — D

m(submitted,w(Brownback ~
dep
<Vagent D VW(Brownback) >

5. Use disjunction of reverse dependency relation
representations to build a representation of the
dependent node. E.g.,

—_ V nsubjpass
VY m(submitted,w(Brownback

\Y

m(Brownback

Aggregate similarity of graph fragments is a linear
combination of the top-down and bottom-up similast

SifT(X, y) = a(vn(x)’vn(y)) + IB(Vm(X) ! Vm(Y)) ©

where V ) and V_ ., - top-down binary representations of

n(x n(y)

nodesx andy, Vm(x) and Vm(y) - top-down binary

representations of nodgsndy, & and ,3 - weighting
factors.

2.6. Fact extraction

Facts are defined as entity relations of the seeterll
sentences from the sample database contain typesiidency
tree augmented with relation edges. Probe doesaite h
relation edges. Procedure of the fact extractionths
following:
1. A sample with maximum similarity with the probe is
extracted from the database:

s = arggax(vn(s),vn(p))
whereS —samples databaseVn(S) - sample top-down node

vector, V - probe top-down node vector. Top node$p of

n(p)
ands added to match node sepf)}

2. Child nodes of the current matched nodes are greedy
matched by maximum similarity and added to match
node set.

3. Relation edges between nodes in the sample
transferred to matched nodes in the probe.

3. Related work

There are models and methods of distributed reptaten for
encoding data structures in vectors, matrices, igh-brder
tensors. However, vector representation is the mashising
from the computational point of view (see [4]).

Distributed Tree Kernels [14-15] use the following
definition of the distributed vector representiing tsubtrees
of treeT:



T= > gn) )

mIN(T)

whereN(T) — set of nodes of the trde n — node,s(n) — sum
of the distributed vectors of the subtreesTaboted in node
n. The functions(n) is recursively defined as follows:

. s(n) =nwif nis a pre-terminal node¢y — W,

wheren — vector representing the nodew — vector
representing the wond.

© gn)=nd(c, +9c))0...0(c, +5(c,))
n is not a pre-terminal nodg — C,-.-4C,» where

C;...,C, - vectors of the child node§,,...,C, .

The binding functiond is either the reverse element-wise
productV =allb:

v, =)ab, ., (®)

(whereV;, & and b, _;,, - elements of the corresponding
vectors, )/ - normalization factor), or discrete vector
convolution [13].

Two types of Distributed Tree Kernels are propofget
15]:
e Pure Distributed Tree Kernels that use random vecto
with elements drawn independently from a normal
distributionN(0,1).

« Distributional Distributed Tree Kernels that use ALS
word vectors obtained from a large text corpus.

To reduce the computational complexity of distrémit
tree kernels, an embedding scheme is proposed [15].

4, Conclusions

Binary distributed representation of structured dal@aws
easy estimation of the complex object similarityl affective
parallel implementation. However, a new repres@maand
matching scheme for any new problem needs to belaleed.

Binary distributed representation scheme for typed-
dependency representation is proposed, and rdtriva
matching procedures are outlined. Experimental uatain
showed that that using of binary distributed repnéstions
for fact extraction is possible, but random wordtees fail to
capture the word similarity and distributional hipa
representations of the word vectors need to belojgsé in
order to incorporate distributional word semantic.
Distributional Distributed Tree Kernels use LSA tas to
capture the word similarity, but LSA real-valuedctgs do
not apply to the binary distributed representatgmhema.
Experimental evaluation of the randomized projectiv
methods for construction of binary sparse vector
representations [16] is needed.

5. References

[1] Radinsky K. and Horvitz E., “Mining the Web to Pitd
Future Events”,Proc. of International Conference on
Web Search and Data Mining55-264, 2013.

[2] Culotta A. and Sorensen J., “Dependency Tree Kernels
for Relation Extraction”,Proc. of the 42nd Annual
Meeting on Association for Computational Linguistic
2004.

[3] Poon H. and Vanderwende L. “Joint Inference for
Knowledge Extraction from Biomedical Literature”,
Proc. of Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics813-821, 2009.

[4] Rachkovskij D.A. and Slipchenko S. V., “Similarity-
Based Retrieval with Structure Sensitive Sparse Binary
Distributed Representations”,  Computational
Intelligence 28(1), 106-129, 2012.

[5] Slipchenko S.V. and Rachkovskij D.A., “Analogical
mapping using similarity of binary distributed
representations”,  Information Theories and
Applications 16(3), 269-290, 2009.

[6] Slipchenko S.V. and Rachkovskij D.A., “Mapping and
inference by analogy based on neural distributed
representations”, Proc. of Knowledge-Dialogue
Conference9, 95-101, 2009.

[71 Forbus K.D., Gentner D. and Law K., “MAC/FAC: A
model of similarity-based retrievalCognitive Scienge
19(2), 141-205, 1995.

[8] Falkenhainer B., Forbus K.D. and Gentner D., “The
Structure-Mapping Engine: Algorithm and Examples”,
Artificial Intelligence 41, 1-63, 1989.

[9] De Marneffe M.-C. and Manning C.D., “The Stanford
typed dependencies representatioRfpc. of COLING
Workshop on Cross-framework and Cross-domain Parser
Evaluation 1-8, 2008.

[10] Wilson R.C., Hancock E.R. and Luo B., “Pattern vectors
from algebraic graph theory”|EEE Transactions on
Pattern Analysis and Machine Intelligenc7(7), 1112-
1124, 2005.

[11] Riesen K., Neuhaus M. and Bunke H., “Graph
embedding in vector spaces by means of prototype
selection”, Graph-Based Representations in Pattern
Recognition (Lecture Notes in Computer Sciend638,
383-393, 2007.

[12] Rachkovskii D. A.,Slipchenko S. V., Kussul' E. M.dan
Baidyk T. N., “A Binding Procedure for Distributed
Binary Data RepresentationsCybernetics and Systems
Analysis41(3), 319-331, 2005.

[13] Plate T., Holographic Reduced Reprsentation, 2003.

[14] Zanzotto F.M. and Dell'Arciprete L., Distributed
structures and distributional meaningroc. of the
Workshop  on Distributional ~ Semantics  and
Compositionality 10-15, 2011.

[15] Zanzotto F.M. and Dell'Arciprete L., Distributed e
Kernels, Proc. of International Conference on Machine
Learning 193-200, 2012.

[16] Rachkovskij D.A., Misuno I.S. and Slipchenko S.V.
Randomized projective methods for construction of
binary sparse vector representatioi®/bernetics and
Systems Analysid8(1), 146-156, 2012.



