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Abstract 

Method of fact extraction based on reasoning by analogy with 
binary distributed representations is proposed. Details of 
building binary distributed representations and application of 
reasoning by analogy for typed-dependency trees outlined. 

1. Introduction 

Automatic knowledge extraction from natural language texts is 
an important direction of computer linguistics and artificial 
intelligence research. In conditions of fast development of 
global Internet network and growing amount of available 
documents manual search and processing of information 
require huge human and financial resources. Yet only a small 
fraction of information is processed. Therefore interest to 
automatic knowledge extraction from natural language texts 
keeps growing. Examples of knowledge of interest are 
descriptions of geo-politic events [1], results in bio-molecular 
research [2], or object relationships in news [3].   

Models and methods that are used for relation extraction 
vary from simple classification models (e.g., combination of 
CRF and Bayesian rules [1], or SVM with kernels on 
dependency trees [2]) to complex probabilistic graphical 
models (e.g., Markov Logic [3] that combines Markov 
networks and first-order logic calculus). 

The proposed approach is a development of ideas and 
methods of case-based reasoning [4-7], which are 
characterized by: 

• Use of a sample database to build inferences that allows 
simple interpretation of the inference process. 

• Use of binary distributed representations of a probe and 
the samples that in contrast to logical and non-distributed 
models allow fast and effective parallel lookup of 
samples from the database. 

Methods that are based on binary distributed 
representations were used successfully in modeling reasoning 

by analogy [4-6], but text descriptions of samples were 
formalized by experts and rewritten to structured machine-
readable descriptions [7,8]. Automatic construction of 
structured machine-readable descriptions is the open research 
topic. This work focuses on simple fact extraction (much like 
the related works [1-3]), but is using methods of reasoning by 
analogy [4-6]. 

2. Fact extraction 

This work is using Stanford typed-dependencies “trees”, 
which really are Direct Acyclic Graphs (DAG) that are 
obtained by preprocessing  constituency-based parsing tree 
[9]. Similar preprocessing is used to build syntactic relations 
in classification [2] and probabilistic graphical models [3]. 

2.1. Typed-dependencies and matching relations 

Typed-dependency trees represent syntactic and semantic 
relations of words in a sentence (terminals only), while 
constituency-based parsing tree creates new non-terminal 
entities to represent the syntactic structure (see Figure 1 for 
details). Typed-dependencies are represented by triples  
name (governing word, dependent word). E.g., for the 
sentence “Bills on ports and immigration were submitted by 
Senator Brownback, Republican of Kansas” we have the 
following triples: nsubjpass(submitted,Bills),  
auxpass (submitted,were), agent(submitted,Brownback),  
nn(Brownback,Senator), appos(Brownback,Republican), 
prep_of(Republican,Kansas), prep_on(Bills,ports), 
conj_and(ports,immigration) and prep_on(Bills,immigration). 

The key benefit of typed-dependency trees for domain 
experts is a natural representation of relations by graph 
fragments, e.g. for the relation submit('Brownback', 'Bills on 
ports and immigration') name is the general form of verb 
submitted, and object 'Brownback' and subject 'Bills on ports 
and immigration' are direct dependents of the verb. Therefore 
the problem of relation extraction can be stated as matching of 
probe graph fragments to sample graph fragments [2]. 
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Figure 1: Typed-dependency (a) and constituent-based (b) parse trees 



Unfortunately, the complexity of the matching for the 
dependency tree kernel [2] is O (mn3), where m – number of 
nodes in the probe, n – number of nodes in the sample.     

2.2. Binary distributed representations 

Graph embeddings in vector spaces [10-11] allows to cope the 
complexity problem by replacing an expensive graph 
similarity function with cheap vector similarity functions.   

Binary distributed representations employ a similar 
vector-based approach to graph matching problem. Any graph 
element (node, edge or subgraph) is represented by a binary 

vector N}1,0{∈X  with a large number of elements N , 

but only a small fraction of non-zero elements 2
1<<N

M . 

Similar items should have similar binary representations, 
whereas items with undefined similarity have dissimilar 
representations [4]. The measure of similarity is dot product 
of binary representations  
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 In the context of the graph matching we expect that 
similar subgraphs should have similar binary representations. 
This is an ill posed problem because there is no “good” 
theoretical measure of graph similarity like subgraph 
isomorphism or maximum common subtree that corresponds 
to the expert notion of graph similarity in the text mining 
domain.  

Proper definition of the similarity measure should employ 
some learning process, but this definition is beyond the scope 
of this work.  

2.3. Context-Dependent Thining 

Binary distributed representations use unique random binary 
vectors to represent dissimilar atomic items. Complex items 
are built from atomic items using context-dependent thinning 
procedure (CDT) that applies to the set of binary vectors 
{ A,B,…} and creates a new binary vector 〈A,B,..〉. CDT has 
properties that are important for building binary 
representations of graphs (see [12] details): 

• Binary vectors of similar sets are similar:  
〈A,B,C〉 ≈ 〈A,B,C〉. 

• Binary vectors of dissimilar subsets are dissimilar: 
〈〈A,B〉,C〉 ≠ 〈A,〈B,C〉〉. 

Algorithm of the context-dependent thinning is the 
following: 

1. The binary disjunction of the input vectors {Xi} is 
built:  

ini XZ ,1=∨=  (2) 

2. Binary conjunctions of  the vector Z and its 

permutation 
kZ

~
combined K times: 
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2.4. Binary distributed representations of typed-
dependencies 

Stanford typed-dependencies “trees” are Direct Acyclic 
Graphs (DAG). The structure of a typed-dependency graph is 
quite similar to the structured analog descriptions [4] that 
allows to use the modified “role-filler” scheme.  

Structured analog description graph nodes represent 
relations, attributes and entities. The ordering of relation node 
children imposes implicit edge labels. Typed-dependency 
graph nodes represent words that may represent relations, 
attributes and entities, but there is no direct mapping.  In 
order to overcome formalization difficulties the following 
procedure is proposed: 

1. Create a unique binary random vector for every word 
in the vocabulary. E.g., Vw(submitted), Vw(bills), etc. 

2. Create a unique binary random vector for every 
unique named entity in the sentence. E.g., 
Vw(Brownback), Vw(Kansas), etc. 

3. Create a unique binary random vector for governor 
dep
dependencyV  and dependant gov

dependencyV roles for 

every dependency relation dependency. E.g.,  
dep
agentV , gov

agentV ,etc. 

4. Use CDT procedure to build a representation of the 
dependency relation: 
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where  
govwV - random vector of  the governing 

word, 
depnV - CDT vector of the dependent node. 

E.g, 

)(

)(

)(),(

Brownbackn
dep
agent

submittedw
gov
agent

agent
Brownbacknsubmittedw

VV

VV

V

∨

∨

∨

=

 
5. Use disjunction of dependency relation 

representations to build a representation of the 
governing node. E.g., 
 

nsubjpass
Brownbacknsubmittedw

nsubjpass
Billsnsubmittedwsubmittedn )(),()(),()( VVV ∨=

 
The proposed procedure builds a binary representation of 

the sentence typed-dependency graph that is used for fast sub-
linear lookup of similar sentences in the sample database. 
General type kernels return valuable output for similar and 
dissimilar instances, but tree kernel functions for relation 
extraction [2] return a normalized, symmetric similarity score 
in range [0,1]. Dissimilar trees have zero score. Therefore, we 
can optimize tree kernel evaluation process by limiting it to 
the similar instances only. 

It can be the simple threshold strategy: 



 }),(:{ θ>pss VV , (5) 

where sV  - sample vector, pV - probe vector, θ - threshold. 

Or the adaptive threshold strategy: 
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where *s
V - sample with the highest score. 

2.5. Matching typed-dependency graph fragments 

There are two kinds of the node similarity in typed-
dependency graphs: 

• The similarity of the dependant sub-graphs (top-down 
similarity), which is discussed in the previous subsection.  

• The similarity of the governing sub-graphs (bottom-up 
similarity), which haven’t discussed yet. 

A simple way to incorporate the bottom-up similarity is to 
build the disjunction of the node representation and its 
ancestor role representations (see Figure 2 and [5] for details). 
However, this approach works only for simple cases, because 
it treats all ancestor roles equally and ignores ancestor 
representations. 
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Figure 2: Node roles 

The modification of steps 4 and 5 of the procedure from 
the previous subsection allows to build better representations 
for the mapping, but at the cost of higher complexity.  

4. Use CDT procedure to build a representation of the 
reverse dependency relation: 
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where  
govmV - random vector of the governing node, 

depwV - CDT vector of the dependent word. E.g, 
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5. Use disjunction of reverse dependency relation 

representations to build a representation of the 
dependent node. E.g., 
 

nsubjpass
BrownbackwsubmittedmBrownbackm )(),()( VV =  

 
Aggregate similarity of graph fragments is a linear 

combination of the top-down and bottom-up similarities: 

),(),(),( )()()()( ymxmynxnyxsim VVVV βα +=  (6) 

where )(xnV  and )( ynV  - top-down binary representations of 

nodes x and y, )(xmV  and )( ymV  - top-down binary 

representations of nodes x and y, α and β  - weighting 

factors. 

2.6. Fact extraction 

Facts are defined as entity relations of the sentence. All 
sentences from the sample database contain typed-dependency 
tree augmented with relation edges. Probe doesn’t have 
relation edges. Procedure of the fact extraction is the 
following: 

1. A sample with maximum similarity with the probe is 
extracted from the database: 

),(maxarg* )()( pnsn
Ss

s VV
∈

=  

where S – samples database,  )(snV  - sample top-down node 

vector, )( pnV  - probe top-down node vector. Top nodes of p 

and s added to match node set {(p,s)} 
2. Child nodes of the current matched nodes are greedy 

matched by maximum similarity and added to match 
node set. 

3. Relation edges between nodes in the sample 
transferred to matched nodes in the probe. 

3. Related work 

There are models and methods of distributed representation for 
encoding data structures in vectors, matrices, or high-order 
tensors. However, vector representation is the most promising 
from the computational point of view (see [4]). 

Distributed Tree Kernels [14-15] use the following 
definition of the distributed vector representing the subtrees 
of tree T: 
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where N(T) – set of nodes of the tree T, n – node, s(n) – sum 
of the distributed vectors of the subtrees of T rooted in node 
n. The function s(n) is recursively defined as follows: 

• wn ⊗=)(ns if n is a pre-terminal node wn → , 

where n – vector representing the node n, w – vector 
representing the word w. 

• ))(())(()( 11 nn cscsns +⊗⊗+⊗= ccn K
 if 

n is not a pre-terminal node 
nccn ,,1 K→ , where 

ncc ,,1 K - vectors of the child nodes ncc ,,1 K . 

The binding function ⊗ is either the reverse element-wise 

product bav ⊗= : 

 
1+−= inii bav γ , (8) 

(where iv , ia and 1+−inb - elements of the corresponding 

vectors, γ - normalization factor), or discrete vector 

convolution [13]. 

Two types of Distributed Tree Kernels are proposed [14-
15]: 

• Pure Distributed Tree Kernels that use random vectors 
with elements drawn independently from a normal 
distribution N(0,1). 

• Distributional Distributed Tree Kernels that use LSA 
word vectors obtained from a large text corpus. 

To reduce the computational complexity of distributed 
tree kernels, an embedding scheme is proposed [15].   

4. Conclusions 

Binary distributed representation of structured data allows 
easy estimation of the complex object similarity and effective 
parallel implementation. However, a new representation and 
matching scheme for any new problem needs to be developed. 

Binary distributed representation scheme for typed-
dependency representation is proposed, and retrieval and 
matching procedures are outlined. Experimental evaluation 
showed that that using of binary distributed representations 
for fact extraction is possible, but random word vectors fail to 
capture the word similarity and distributional binary 
representations of the word vectors need to be developed in 
order to incorporate distributional word semantic. 
Distributional Distributed Tree Kernels use LSA vectors to 
capture the word similarity, but LSA real-valued vectors do 
not apply to the binary distributed representation schema. 
Experimental evaluation of the randomized projective 
methods for construction of binary sparse vector 
representations [16] is needed.  
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