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Abstract
Hyperspectral imaging enables accurate classification,
but also presents challenges of high-dimensional data
analysis. While pixelwise classification methods classify
each pixel independently, recent studies have shown the
advantage of considering the correlations between spa-
tially adjacent pixels for accurate image analysis. This
paper provides an overview of the available hierarchical
models for spectral-spatial classification of hyperspectral
images. The two most recent models are experimentally
compared on a 102-band ROSIS image of the Center of
Pavia, Italy. The experimental results demonstrate that
classification methods using hierarchical models are at-
tractive for remote sensing image analysis.

1. Introduction

Classification of remote sensing images is an important
and challenging task in many application domains, such
as precision agriculture, mineralogy, and monitoring and
management of environment. The objective of the image
classification system is to categorize each pixel or each
object in the image into one of the information classes
that characterize the analyzed scene. The advent of hy-
perspectral imagery has opened new possibilities in im-
age analysis and classification. Hyperspectral imaging
sensors measure the energy of the received light in tens
or hundreds of narrow spectral channels in each spatial
position [1]. Consequently, it becomes possible to iden-
tify physical materials and objects within the image scene
with higher accuracies when compared to panchromatic
or multispectral images. However, when classifying hy-
perspectral images, two principal challenges must be ad-
dressed: 1) data processing in a high-dimensional spec-
tral space; 2) extraction and analysis of spatial informa-
tion.

A wide range of pixelwise classification methods have
been proposed, which assign to each pixel a class based
on its spectrum. One of the most accurate and frequently
used techniques is a kernel-based Support Vector Ma-
chines (SVM) classifier, which has good generalization
ability and performs well on a high-dimensional data,
when a limited number of samples is available [2].

Recent works have shown the advantage of includ-

ing information about spatial dependencies for accurate
classification, i. e. performing spectral-spatial classifi-
cation [3, 4]. One of the approaches of spectral-spatial
classification consists in including the information from
the closest neighborhood for classifying each pixel, us-
ing for instance morphological operators [5] or Markov
random fields [6]. Even though classification accura-
cies were improved when compared to pixelwise classi-
fication, the use of these methods raises the problem of
neighborhoods’ scale selection.

Another group of spectral-spatial classification tech-
niques applies segmentation for defining spatial depen-
dencies in the image [4]. Segmentation partitions an im-
age into homogeneous regions with respect to some ho-
mogeneity criterion. The challenge consists in selecting
an appropriate measure of region homogeneity. This pa-
per gives an overview of hierarchical segmentation mod-
els developed for spectral-spatial classification of hyper-
spectral images. An hierarchical optimization method
starts with initial image partitioning or considers each
pixel as one region, and iteratively merges the most sim-
ilar adjacent regions [7]. A measure of region similarity
and a convergence criterion must be defined. The paper
reviews the selection of these criteria in the available hi-
erarchical models, and explains how spatial dependencies
are exploited for accurate classification.

The paper is organized as follows. In the next section,
an overview of hierarchical models for hyperspectral im-
age classification is given. The two most recent models
are experimentally compared in Section 3. Finally, con-
clusion is drawn in Section 4.

2. Hierarchical models for hyperspectral
image classification

2.1. Multilevel context-based model

Bruzzone and Carlin [3] were the pioneers in exploiting
hierarchical analysis for context-based classification of
high-resolution remote sensing images. In order to miti-
gate the dependence of segmentation performance on the
convergence criteria, they proposed to use a set of par-
titions, or levels, obtained by hierarchical region grow-
ing. For each given pixel x and at each level l, a region



to which this pixel belongs defines the spatial context of
this pixel.

The multiresolution segmentation algorithm starts
from the pixel level, where each pixel represents a re-
gion. At each iteration, regions are merged into bigger
ones. The aim is to minimize the homogeneity predicate
when two regions are merged. This predicate is defined
as a cost criterion for the fusion of two regions, and it
takes into account spectral and shape (compactness and
smoothness) constraints. If the smallest growth of the
merging cost exceeds a threshold defined by the user,
the region merging process at the considered level l con-
verges. The number of levels must be chosen by the user,
and it mainly depends on: 1) geometrical resolution of
the image and 2) size of the objects present in the scene.

Once multilevel segmentation is performed, context-
based features features are computed for each pixel
(mean, standard deviation, area, shape factor at each seg-
mentation level) and are stacked into one vector. SVM
classification using these feature vectors is further per-
formed.

Good classification performances on panchromatic
remote sensing images were reported. Huang and Zhang
recently applied a similar approach for classification of
hyperspectral data, by using the spectral cost criterion as
a homogeneity predicate [8]. Because the dimensional-
ity of the resulting feature vector is significant, the mul-
tilevel hierarchical model is computationally and space
expensive.

2.2. SVM classification of segmentation regions

Linden et al. [9] applied SVM for classification of every
region in a hyperspectral image. First, eCognition region
growing segmentation is performed [10]. It starts with
individual pixels as the initial regions, and at each itera-
tion it randomly distributes subsequent merges as far as
possible from each other over the whole image. The dis-
similarity criterion between regions is computed as a lin-
ear combination of radiometric heterogeneity, computed
as the mean of the variance in each spectral channel, and
form heterogeneity, computed as the ratio between the
actual edge length of a segment and the edge length of
a square with the same number of pixels as the segment.
The user must select relevant segmentation level(s).

Then, a vector mean for every region is computed,
such that the value in each band represents the average
spectral information of the pixels in the considered re-
gion in the respective band. Afterwards, the regions are
classified by an SVM classifier. The obtained experimen-
tal results were generally not an improvement over those
obtained by pixelwise classification. The possible reason
may lie in the fact that a vector mean is a poor represen-
tative feature for image regions.

Tarabalka et al. [11] proposed a majority vote ap-
proach to overcome this drawback. In their method, first

Hierarchical Segmentation (HSeg) is performed. It it-
eratively merges the closest adjacent regions according
to the Spectral Angle Mapper (SAM) criterion, and in-
cludes a possibility of merging non-adjacent regions by
spectral clustering. An appropriate level of segmenta-
tion detail can be chosen interactively with the software
HSEGViewer. Then, SVM pixelwise classification of the
image is performed. Finally, for every region in the seg-
mentation map, all the pixels are assigned to the most
frequent class within this region. The described tech-
nique yielded a significant improvement of classification
accuracies when compared to methods using local spatial
neighborhoods. However, in [11] a method for the auto-
mated selection of relevant hierarchical level(s) was not
proposed.

2.3. Marker-based hierarchical segmentation

In [4], Tarabalka et al. proposed a marker-based method
for the automated selection of a single hierarchical seg-
mentation level. A marker is defined as a set of image
pixels associated with one object. The marker-controlled
segmentation approach determines a marker for each ob-
ject and then segments an image in such a way that each
region in a segmentation map contains one marker. The
authors proposed to use probabilistic classification results
for selecting the most reliably classified pixels as markers
of spatial regions.

First, probabilistic SVM classification of a hyper-
spectral image is performed. This step results in a clas-
sification map, where each pixel has a class label, and a
probability map, where each pixel contains a probabil-
ity estimate to belong to the assigned class. A connected
components labeling is further applied on the classifica-
tion map. Each connected component is analyzed as fol-
lows:

• If a region is large (number of pixels in the region
> M ), its marker is defined as the P% of pixels within
this region with the highest probability estimates.

• If a region is small, its potential marker is formed
by the pixels with probability estimates higher than the
defined threshold S.

The main idea behind the Marker-based HSeg (M-
HSeg) method consists in assigning a marker label for
each region containing marker pixels, and iteratively
merging regions with an additional condition: two re-
gions with different marker labels can not be merged to-
gether. The SAM or other dissimilarity criterion can be
used for region growing. The iterative process stops when
a number of regions is equal to the number of markers,
and hence no more merging is possible. Finally, the class
of each marker is assigned to all pixels in the region con-
taining this marker. The drawback of the marker-based
hierarchical model is that the final classification result
strongly depends on the performances of the marker se-
lection procedure.



2.4. Hierarchical segmentation with integrated clas-
sification

For mitigating the drawback mentioned in the previ-
ous subsection, Tarabalka and Tilton [12] proposed a
Hierarchical Segmentation with integrated Classifica-
tion (HSegClas) model for hyperspectral imagery. The
method proceeds as follows:

First, SVM pixelwise classification is performed, re-
sulting in a classification map and K class probabilities
for each pixel for a K-class problem. At the next step,
hierarchical segmentation with integrated classification is
performed using the following procedure:

1) Assign a new region label for each pixel. Each
new region Ri gets a preliminary class label L(Ri) and
a K-dimensional vector of class probabilities {Pk(Ri) =
P (L(Ri) = k|Ri), k = 1, ...,K}.

2) Calculate the dissimilarity criterion DC(Ri, Rj)
between all pairs of spatially adjacent regions {Ri, Rj}
as a function of statistical, classification and geometrical
features:

• First, the spectral dissimilarity DCspec(Ri, Rj)
between two regions is estimated by computing
SAM between the region mean vectors ui =
(ui1, ..., uiB)

T and uj = (uj1, ..., ujB)
T :

DCspec(Ri, Rj) = SAM(ui, uj) =
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• If the regions have equal class labels L(Ri) =
L(Rj) = k′,

DC(Ri, Rj) =

(2−max(Pk′(Ri), Pk′ (Rj)))DCspec(ui, uj). (2)

• If L(Ri) �= L(Rj), analyze region size: if a
number of pixels in each region is larger than M ,
DC(Ri, Rj) = ∞, otherwise:

DC(Ri, Rj) =

(2 −min(PL(Rj)(Ri), PL(Ri)(Rj)))DCspec(ui, uj).
(3)

Furthermore, for adjacent regions with non-equal
class labels, their rectangularity features are analyzed. A
region rectangularity rect(·) is defined as a ratio of the
region area and the area of a minimum area rectangle of
an arbitrary orientation including the region. A set of
classes RecSet representing objects with high rectangu-
larity values is previously selected. Then, if

((card(Rr) > M)&(L(Rr) ∈ RecSet)&

(rect(Ri ∪Rj) > rect(Rr)) = true, r ∈ {i, j},

Table 1: Results for the Center of Pavia image. Informa-
tion Classes, Overal, Average and Class-Specific Accura-
cies in Percentage.

SVM ECHO M-HSeg HSegClas
Overall accuracy 94.96 95.11 96.35 97.12
Average accuracy 92.56 93.15 95.49 97.03
Water 98.12 99.07 97.74 97.62
Trees 90.48 93.43 90.36 93.64
Meadows 94.08 88.51 95.62 95.39
Bricks 79.86 82.84 87.77 92.89
Bare soil 97.12 94.96 99.33 99.01
Asphalt 93.52 92.31 95.01 96.05
Bitumen 82.48 92.57 94.80 99.58
Tile 97.41 96.21 98.80 99.08
Shadows 99.95 98.44 100 100

then DC(Ri, Rj) = W ·DC(Ri, Rj), (4)

where card(R) is a number of pixels in the region R,
W is a user set parameter, W < 1. Once the dissim-
ilarity criteria between all pairs of adjacent regions are
computed, the algorithm proceeds as follows:

3) Find the smallest dissimilarity criterion value
DCmin.

4) Merge all pairs of neighboring regions with DC =
DCmin. For each new region Rnew = Ri ∪ Rj recom-
pute:

• A vector of new class probabilities as

Pk(Rnew) =
Pk(Ri)card(Ri) + Pk(Rj)card(Rj)

card(Rnew)
,

(5)
k = 1, ...,K , card(Rnew) = card(Ri) + card(Rj).

• Class label as

L(Rnew) = argmax
k

{Pk(Rnew)}. (6)

5) Stop if each image pixel has been involved at least
once in the region merging procedure. Otherwise, update
the dissimilarity criteria between the new regions and all
regions spatially adjacent to them, and go to step 3.

3. Experimental results

The two most recent models (M-HSeg and HSegClas) are
experimentally compared on the Center of Pavia image
acquired by the Reflective Optics System Imaging Spec-
trometer. The image is of 785 by 300 pixels, with a spatial
resolution of 1.3 m/pixel and 102 spectral channels. Nine
thematic classes are considered, which are detailed in Ta-
ble 1. Fig. 1(a) shows the reference data. Thirty samples
for each class were randomly chosen from the reference
data as training samples. The remaining samples com-
posed the test set.
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Figure 1: Center of Pavia image. (a) Reference data. (b)
HSegClas classification map.

For both methods, one versus one SVM classification
with the Gaussian radial basis function kernel was pre-
formed, with the parameters chosen by the five-fold cross
validation: C = 128 and γ = 2−5. Other parameters
were set as: for the M-Hseg method, M = 20, P = 40%,
S was set equal to the lowest probability within the
highest 2% of probabilities; for the HSegClas method,
M = 30, W = 0.8, and RecSet = {7, 8}. Table 1
gathers overall, average and class-specific accuracies of
the SVM, ECHO (Extraction and Classification of Homo-
geneous objects, a standard spectral-spatial classification
technique in remote sensing) [13], M-HSeg and HSeg-
Clas methods. As can be seen from the table, both hier-
archical methods outperform the SVM and ECHO tech-
niques. The HSegClas method yields the highest global
and most of class-specific accuracies (see Fig. 1(b)).

4. Conclusion

This paper overviewed hierarchical models for hyper-
spectral image classification. Experimental results did
show that the recently developed spectral-spatial classifi-
cation methods using hierarchical models succeed in tak-
ing advantage of both spatial and spectral information for
accurate image analysis.
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