Computing simulation method in orders based transparent
parallelizing technology

Vitalij Pavlenko, Viktor Burdeinyi

ComputerControl Systems
Odessa National Polytechnic University, Odessa

pavl enko_vitalij@mil.ru,

Abstract

This paper is devoted to the problem of analysistimie
characteristics of execution of parallel prograrhsttuse
orders based transparent parallelizing technolodyn
approach that combines profiling and asymptoticcetien
time analysis is proposed. It is split into a dfedtages, making
it possible to repeat only some of the stagesgifitiput data of
the program, cluster configuration or schedulingoathm
changes. The proposed method can be used for &sima
program execution time, finding and eliminating tlestecks,
estimating the power of cluster needed to exetggptogram
within given time limit.

1. Introduction

The problem of estimation of time of execution gogithms
and their parts is a significant problem that iewfsolved by
software developers. This problem is also a sigaifi part of
applied algorithms optimization. It is usually setv by
profiling (test runs of the program with measurirgg
execution time of methods and their parts), findasgmptotic
estimations of execution time of procedures anduprtized
analysis of execution time [1].

In the case of parallel computing this problemalved during
algorithms optimization, estimating program exemutitime
for a fixed cluster, estimating cluster computirgver needed
for the program to run within given time limit, ing and
removing bottlenecks of parallel program. It becemeuch
more complex in the case of parallel computing bsea

processors have no common time scale and commiamcat

between them should be taken into consideration ThEe
purpose of this paper is to propose execution cheniatics
analysis method for parallel applications based toe
technology of orders based transparent parallgif3i{4].

2. Technology of ordersbased transparent
parallelizing
The technology of orders based transparent paraigl is

based on assumption that user has selected socedpres in
the program. Each procedure should not modify aatad

during execution except values of parameters and/or

temporary (and inaccessible outside the procedudatn
structures. Each parameter of each selected proeethould

be passed by value. Execution of program must mean

execution of certain selected procedure. This apsom
imposes some limits on program: for example, ibids using
global variables or 1/0O devices. They can be loedeand
work with global variables and 1/O devices can Htievaed

vburdej ny@mai | . com

under specific conditions, however, so strict aggions make
explaining and understanding the technology easier.

The example that will be used to illustrate thentedogy is
shown on figure 1:

Fig. 1. lllustration of a part of program.

We show procedure execution time with a rectangiee(goes
from left to right). Called procedures are shown rimsted
rectangles. Lengths of rectangles and their pans a
proportional to the execution time of correspondprggram
parts. It is considered that all input parametes aready
known at the moment of program execution start.e&in
connect moment of getting some value computed avmant
of its first usage.

The first principle of offered technology introdscehe
concept of an order as the minimal unit of work ttzould be
executed on one computer and cannot be split intaller
parts. Such a unit of work is defined as executdrone
procedure without execution of procedures it calsach
procedure call creates a new order that shouldkbeuéed by
some computer of cluster (let's call such call “imak of
order”). One of selected procedures should be rdagkemain
one to define program entry point.

This principle is illustrated on figure 2. It is esidered that
four orders are executed by different processors$ #eir
execution starts immediately after making corresin
order. Extra lines connect parts of one procedure.

Fig. 2. An illustration of the first principle offiered
technology.

A lot of algorithms contain intervals of time besvemoments
of getting some values computed and moments df dsage
of these values; it is often possible to make sintérvals
bigger by some changes in computations order elfettare no
such intervals in some algorithm it means that egudration
should not be executed before previous one is ®e@rywe

cannot create parallel implementation of this atpar at all.
If we perform procedure call in common programming
languages, caller procedure continues its executidy after
called one is over. In other words, we can say taler
procedure starts waiting for output parameters alfled
procedure in the moment of call and stops waitingthie
moment when called procedure finishes its executitime
second principle proposes to continue executioncalfer
procedure after a call and to start waiting onlythie moment
of first request to output parameters of calledcpdure. If
called procedure execution is already over in tlwment of
such request, we should not start waiting at all.

This principle is illustrated on figure 3:

Fig. 3. An illustration of the second principle of offered
technology.

This diagram can be built from previous one by mmali
possible left shift of all computations that keéfps following
requirement met: each value is used only after ¢gbmputed.
An order means a unit of work but is based on pafts
program source, marked as procedures in the terfns o
programming language, and programmers can havengas
mark parts of source as procedures that can hatvengoin
common with getting high efficiency of parallel dipption.
Theoretically there’s no problem about that becausecan
easily split a procedure with big execution timéoim few
smaller ones, and any unneeded splitting only ceswogder of
computations and does not change efficiency of narag But
from the practical point of view we can tell thaving a lot of
often called procedures with small execution tirseai bad
situation because of big overhead for selected guhaes
calls. So we should allow programmer to use stahdaty of
calling the selected procedures.

Offered technology is based on task parallelism EhiID
model. It uses only four computers communicatioarapons:
getting an order, getting results of order exeeytimaking an
order and sharing results of order execution. Amerd are
only two operations that are accessible to usekingaan
order and getting a value, computed in another ror8e
organization of computers interaction can be hiddem user.
That can make parallel applications developmenthmassier,
but also means that a framework that implements the
technology should take care or efficient usage efvork.
Note that a program in this technology is a seinsfructions
for a whole cluster (unlike programs in MPI tectowy that
must be a set of instructions for each computer).

3. Computing simulation method

The main idea of the proposed method is the foligwiwe
can lower the time of test run of parallel appiicat by
skipping some computations that are going to takelntime.
Two conditions should be met for a block to makpassible
to skip it. In the first place, estimation of ex@on time of

such block should be known. In the second placghauld be
possible to continue this test run without knowthg values
that are going to be computed in the block. We warrant
that by assuming that values, computed in the blsbkuld
not be user in any conditional operators.

For instance, we can skip blocks with asymptotieceion
time known. If we know asymptotic execution timer fa

block, it means that we know a functic f(a) that
[t,,c, >0,0a0A:¢f(a)sT(a)<c,f(a) .
whereT(a’) is time of execution of the bloc@ is a value

representing input parameters of the block, A & ght of all
possible values of input parameters of the bloakadton

f (a) is usually a function of a few numerical charastars
of parameters of the block — such as length of mayaor

number of vertexes in a graph. After defining
Tla , L ,

c(a) = ——1 Wwe can re-write the definition of asymptotic
f(a)

estimation in the following form:

[k,,c, >0,0a0A:c <c(a)<c,.
If we run the block for a few times on one computee will
be able to compute valu C (a), i =1 N (Nis the number

of runs). We can taka(a): M {c(a)} as an estimation of

c(a) and use it to compute the estimatiorT(a’). This

estimation can be used only for the computer whédras been
computed and for the ones with identical hardwangl a
software. In order to get such estimations for ottmmputers
of the cluster, we can either repeat test runsheftiiock on
other computers of the cluster or to use time @fcaton of
some sample algorithm as the unit of time.

The proposed method consists of four stages. Irfitsteone
user marks a set of blocks in the source of thgnarm. Each
marked block should meet the following requirements
estimation of block execution time should be knoand it
should be possible to compute it quickly; valuesnputed in
the block, should not be used in any conditionatrafors;
block should not make any calls or requests foa;datocks
should not be nested; user should implement aligma
version of each block that works as quickly as imessand
makes all further computations work properly. Eacarked
block should be surrounded with sending notifigagioto
computing support environment about block executiare
and choosing the implementation of the block teekecuted.
For instance, if a block multiplies two n-by-n nied#ss by
definition, it should declare execution time n*nénd should
have alternative implementation that creates a newy-n
matrix without its initialization. Also programmabas to create
a set of tests that run every marked block at least.

During the second stage the tests are run in dadeompute

valuesa(a) for marked blocks. In order to minimize the

influence of random variations of execution timagte test has
to be repeated for a few times. A sample of resuéxecution
of the second stage for a block is shown on figure

Fig. 4. Constant in asymptotic estimation of exiecut
time.

For example, execution time a|C(a') for algorithm that

computes multiplication of two square matrixes li®wsn on
figures 5 and 6:

Fig. 5. Execution time of multiplication of square
matrixes.

0.00000016

0,00000014

£ ooooannne

0.0000001 1

cution time divided by its e

0.00000008 15

@

0,00000006

0,00000004

Fig. 6. Execution time of multiplication of squamatrixes
divided by its estimation.

During the third stage a test run of a program el

Alternative implementations of marked blocks aredjsand

execution time of blocks is considered to be edwalits

estimation. If execution of marked blocks takesaadirall the

time of a real run of the program, we can run tregmm run

fast enough. It has to be done either on every atenpf the

cluster, or only once if time of execution of a gdenprogram
is used as the unit of time. After the third stage have

information about the orders of the parallel progréhat

contains the following information about each ordiiration,

moments of data requests, moments of providing.data
sample result of execution of the third stage @ashon figure

7

order B order © request 0 request 2

......................

Fig. 7. Sample result of the third stage of method.

On the fourth stage simulation of execution of peka
application is performed. Only the information abowders,
gathered on the third stage, is used. After thetliostage we
have information about the load of the cluster abdut all
scheduling-related events that should happen duhiegreal
run of the application. This information can be duge find
program execution time and to find information abou
bottlenecks of the parallel application.

Each stage uses only the results of previous stageésome
specific information about the parallel applicatidfirst two
steps use the source of the application, thirduses its input
data and the fourth one uses information aboutcthster.
Splitting the method into a set of stages makg®#sible to
re-use results of some stages if something chamgebe
parallel application and the cluster. For instaneser can
repeat only the fourth stage to find the configiorabf cluster
if program execution time is limited.

4. Conclusions

The method, proposed in this paper, can be useskfonating
the time of parallel program execution, findingarrhation
about bottlenecks, estimating the power of clusteeded to
solve problem within given time limit. This metheadmbines
profiling and algorithms complexity analysis.

5. References

[1] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest,
Charles E. Leiserson, “Introduction to Algorithms”,
McGraw-Hill Higher Education, 2001.

[2] Voyevodin V.V, Voyevodin VLV. “Parallel
Computations” [in RussianBHV, St. Petersburg, 2002.

[3] Pavlenko V.D., Burdejnyj V.V. “Cluster Computing
Using Orders Based Transparent Parallelizing”,
Information Systems Technology and its Applications
Proceedings 6th International Conference ISTA'2007,
May 23-25, 2007, Kharkiv, Ukraine. — Lecture Nates
Informatics (LNI), Series of the Gesellschaft fur
Informatik (Gl), Vol. P=107: 152-163, Bonn 2007

[4] Pavlenko V., Burdeinyi V., “Orders Based Transparen
Parallelizing Technology”signal/lmage Processing and
Pattern Recognition: Proceedings the Ninth All-
Ukrainian International Conference UkrOBRAZ'2008,
November 3-7, 2008, Kyiv, Ukraine.

