
Computing simulation method in orders based transparent
parallelizing technology

Vitalij Pavlenko, Viktor Burdeinyi

Сomputer Сontrol Systems
Odessa National Polytechnic University, Odessa

pavlenko_vitalij@mail.ru, vburdejny@gmail.com

Abstract

This paper is devoted to the problem of analysis of time
characteristics of execution of parallel programs that use
orders based transparent parallelizing technology. An
approach that combines profiling and asymptotic execution
time analysis is proposed. It is split into a set of stages, making
it possible to repeat only some of the stages if the input data of
the program, cluster configuration or scheduling algorithm
changes. The proposed method can be used for estimating
program execution time, finding and eliminating bottlenecks,
estimating the power of cluster needed to execute the program
within given time limit.

1. Introduction

The problem of estimation of time of execution of algorithms
and their parts is a significant problem that is often solved by
software developers. This problem is also a significant part of
applied algorithms optimization. It is usually solved by
profiling (test runs of the program with measuring of
execution time of methods and their parts), finding asymptotic
estimations of execution time of procedures and by amortized
analysis of execution time [1].
In the case of parallel computing this problem is solved during
algorithms optimization, estimating program execution time
for a fixed cluster, estimating cluster computing power needed
for the program to run within given time limit, finding and
removing bottlenecks of parallel program. It becomes much
more complex in the case of parallel computing because
processors have no common time scale and communication
between them should be taken into consideration [2]. The
purpose of this paper is to propose execution characteristics
analysis method for parallel applications based on the
technology of orders based transparent parallelizing [3][4].

2. Technology of orders based transparent
parallelizing

The technology of orders based transparent parallelizing is
based on assumption that user has selected some procedures in
the program. Each procedure should not modify any data
during execution except values of parameters and/or
temporary (and inaccessible outside the procedure) data
structures. Each parameter of each selected procedure should
be passed by value. Execution of program must mean
execution of certain selected procedure. This assumption
imposes some limits on program: for example, it forbids using
global variables or I/O devices. They can be loosened and
work with global variables and I/O devices can be allowed

under specific conditions, however, so strict assumptions make
explaining and understanding the technology easier.
The example that will be used to illustrate the technology is
shown on figure 1:

Fig. 1. Illustration of a part of program.

We show procedure execution time with a rectangle (time goes
from left to right). Called procedures are shown by nested
rectangles. Lengths of rectangles and their parts are
proportional to the execution time of corresponding program
parts. It is considered that all input parameters are already
known at the moment of program execution start. Lines
connect moment of getting some value computed and moment
of its first usage.
The first principle of offered technology introduces the
concept of an order as the minimal unit of work that should be
executed on one computer and cannot be split into smaller
parts. Such a unit of work is defined as execution of one
procedure without execution of procedures it calls. Each
procedure call creates a new order that should be executed by
some computer of cluster (let’s call such call “making of
order”). One of selected procedures should be marked as main
one to define program entry point.
This principle is illustrated on figure 2. It is considered that
four orders are executed by different processors and their
execution starts immediately after making corresponding
order. Extra lines connect parts of one procedure.

Fig. 2. An illustration of the first principle of offered
technology.

A lot of algorithms contain intervals of time between moments
of getting some values computed and moments of first usage
of these values; it is often possible to make such intervals
bigger by some changes in computations order. If there are no
such intervals in some algorithm it means that each operation
should not be executed before previous one is over, so we

cannot create parallel implementation of this algorithm at all.
If we perform procedure call in common programming
languages, caller procedure continues its execution only after
called one is over. In other words, we can say that caller
procedure starts waiting for output parameters of called
procedure in the moment of call and stops waiting in the
moment when called procedure finishes its execution. The
second principle proposes to continue execution of caller
procedure after a call and to start waiting only in the moment
of first request to output parameters of called procedure. If
called procedure execution is already over in the moment of
such request, we should not start waiting at all.
This principle is illustrated on figure 3:

Fig. 3. An illustration of the second principle of offered
technology.

This diagram can be built from previous one by maximal
possible left shift of all computations that keeps the following
requirement met: each value is used only after it is computed.
An order means a unit of work but is based on parts of
program source, marked as procedures in the terms of
programming language, and programmers can have reasons to
mark parts of source as procedures that can have nothing in
common with getting high efficiency of parallel application.
Theoretically there’s no problem about that because we can
easily split a procedure with big execution time into a few
smaller ones, and any unneeded splitting only changes order of
computations and does not change efficiency of program. But
from the practical point of view we can tell that having a lot of
often called procedures with small execution time is a bad
situation because of big overhead for selected procedures
calls. So we should allow programmer to use standard way of
calling the selected procedures.
Offered technology is based on task parallelism and MIMD
model. It uses only four computers communication operations:
getting an order, getting results of order execution, making an
order and sharing results of order execution. And there are
only two operations that are accessible to user: making an
order and getting a value, computed in another order. So
organization of computers interaction can be hidden from user.
That can make parallel applications development much easier,
but also means that a framework that implements the
technology should take care or efficient usage of network.
Note that a program in this technology is a set of instructions
for a whole cluster (unlike programs in MPI technology that
must be a set of instructions for each computer).

3. Computing simulation method

The main idea of the proposed method is the following: we
can lower the time of test run of parallel application by
skipping some computations that are going to take much time.
Two conditions should be met for a block to make it possible
to skip it. In the first place, estimation of execution time of

such block should be known. In the second place, it should be
possible to continue this test run without knowing the values
that are going to be computed in the block. We can warrant
that by assuming that values, computed in the block, should
not be user in any conditional operators.
For instance, we can skip blocks with asymptotic execution
time known. If we know asymptotic execution time for a

block, it means that we know a function ()αf that

() ()αααα fcTfcAcc 2121)(:,0, ≤≤∈∀>∃ ,

where ()αT is time of execution of the block, α is a value

representing input parameters of the block, A is the set of all
possible values of input parameters of the block. Function

()αf is usually a function of a few numerical characteristics

of parameters of the block — such as length of an array or
number of vertexes in a graph. After defining

() ()
()α
αα

f

T
c = we can re-write the definition of asymptotic

estimation in the following form:

2121)(:,0, cccAcc ≤≤∈∀>∃ αα .

If we run the block for a few times on one computer, we will

be able to compute values () Nici ,1, =α (N is the number

of runs). We can take ()αc = (){ }αcM as an estimation of

()αc and use it to compute the estimation of ()αT . This

estimation can be used only for the computer where it has been
computed and for the ones with identical hardware and
software. In order to get such estimations for other computers
of the cluster, we can either repeat test runs of the block on
other computers of the cluster or to use time of execution of
some sample algorithm as the unit of time.
The proposed method consists of four stages. In the first one
user marks a set of blocks in the source of the program. Each
marked block should meet the following requirements:
estimation of block execution time should be known and it
should be possible to compute it quickly; values, computed in
the block, should not be used in any conditional operators;
block should not make any calls or requests for data; blocks
should not be nested; user should implement alternative
version of each block that works as quickly as possible and
makes all further computations work properly. Each marked
block should be surrounded with sending notifications to
computing support environment about block execution time
and choosing the implementation of the block to be executed.
For instance, if a block multiplies two n-by-n matrices by
definition, it should declare execution time n*n*n and should
have alternative implementation that creates a new n-by-n
matrix without its initialization. Also programmer has to create
a set of tests that run every marked block at least once.
During the second stage the tests are run in order to compute

values ()αc for marked blocks. In order to minimize the

influence of random variations of execution time, each test has
to be repeated for a few times. A sample of result of execution
of the second stage for a block is shown on figure 4:

Fig. 4. Constant in asymptotic estimation of execution
time.

For example, execution time and ()αc for algorithm that

computes multiplication of two square matrixes is shown on
figures 5 and 6:

0

0.02

0.04

0.06

0.08

0.1

0.12

40 50 60 70 80 90 100 110 120

Order of matrixes

E
xe

cu
ti

o
n

 t
im

e,
 s

Fig. 5. Execution time of multiplication of square
matrixes.

0.00000004

0.00000006

0.00000008

0.0000001

0.00000012

0.00000014

0.00000016

40 50 60 70 80 90 100 110 120

Order of matrixes

E
xe

cu
ti

o
n

 t
im

e
 d

iv
id

e
d

 b
y

it
s

es
ti

m
a

ti
o

n
,

s

Fig. 6. Execution time of multiplication of square matrixes
divided by its estimation.

During the third stage a test run of a program is done.
Alternative implementations of marked blocks are used, and
execution time of blocks is considered to be equal to its
estimation. If execution of marked blocks takes almost all the
time of a real run of the program, we can run the program run
fast enough. It has to be done either on every computer of the
cluster, or only once if time of execution of a sample program
is used as the unit of time. After the third stage we have
information about the orders of the parallel program that
contains the following information about each order: duration,
moments of data requests, moments of providing data. A
sample result of execution of the third stage is shown on figure
7:

Fig. 7. Sample result of the third stage of method.

On the fourth stage simulation of execution of parallel
application is performed. Only the information about orders,
gathered on the third stage, is used. After the fourth stage we
have information about the load of the cluster and about all
scheduling-related events that should happen during the real
run of the application. This information can be used to find
program execution time and to find information about
bottlenecks of the parallel application.
Each stage uses only the results of previous stages and some
specific information about the parallel application. First two
steps use the source of the application, third one uses its input
data and the fourth one uses information about the cluster.
Splitting the method into a set of stages makes it possible to
re-use results of some stages if something changes in the
parallel application and the cluster. For instance, user can
repeat only the fourth stage to find the configuration of cluster
if program execution time is limited.

4. Conclusions

The method, proposed in this paper, can be used for estimating
the time of parallel program execution, finding information
about bottlenecks, estimating the power of cluster, needed to
solve problem within given time limit. This method combines
profiling and algorithms complexity analysis.

5. References

[1] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest,
Charles E. Leiserson, “Introduction to Algorithms”,
McGraw-Hill Higher Education, 2001.

[2] Voyevodin V.V., Voyevodin Vl.V., “Parallel
Computations” [in Russian], BHV, St. Petersburg, 2002.

[3] Pavlenko V.D., Burdejnyj V.V. “Cluster Computing
Using Orders Based Transparent Parallelizing”,
Information Systems Technology and its Applications,
Proceedings 6th International Conference ISTA’2007,
May 23–25, 2007, Kharkiv, Ukraine. – Lecture Notes in
Informatics (LNI), Series of the Gesellschaft fur
Informatik (GI), Vol. P–107: 152-163, Bonn 2007

[4] Pavlenko V., Burdeinyi V., “Orders Based Transparent
Parallelizing Technology”, Signal/Image Processing and
Pattern Recognition: Proceedings the Ninth All–
Ukrainian International Conference UkrOBRAZ’2008,
November 3-7, 2008, Kyiv, Ukraine.

