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Abstract

New correlation-based approach for object detectien
proposed. Method for varying shape object detection
developed. Promising results were obtained by tiopgsed
method on synthetic images.

1. Introduction

Object detection is one of the hardest problemsomputer
vision. It is virtually impossible to extract suferin general
approach from variety of existing up to date objeetection
methods. This is caused by the complexity of theemgitask.
Any particular approach is developed and can bsidered as
superior only for a certain class of objects. Hwgtobject
detection methods can be divided on two classessdlare

feature- and template-based techniques. Featuszibas

methods represent an object image by a set ofréatand
corresponding them spatial relations, thus theyewegertain
amount of information about an object. On the othand,
template-based methods use complete image of actpbjut
majority of those methods are unable to deal &ffelst
enough with variations in shape or texture, othsewit
becomes very computationally expensive.

This paper deals with template-based paradigm.
considers template to be dynamical model of giveijea
image and gives computationally efficient solutitm the
object detection by matching with such a dynanteaiplate.

2. Dynamical template matching

This section formulates the problem of templateebasbject
detection. It also reveals existing problems o§ tApproach
connected with stationarity of template image. €hes

proposed an approach for efficient correlationaljecb
detection, which is based on dynamical templatechnag.

Under dynamical template we understand an objeegém
template that is able to change its shape deperatingome
parameters. It is shown how such technique candoe déh

computationally efficient way.

2.1. Correlational template matching

In general template matching consists of comparigoimput
image | with templateT in order to find coordinategy,y)

of the best match [1]. In general, any suitablerimayy can
be chosen as the degree of matching. One of thepradtical
and common used metric is a sum of squared distg®&D):
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Straightforward utilization of SSD can be compwaélly
expensive so it is more convenient to use croseledion as a
kind of fast SSD approximation
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It follows from decomposition:

S 000)-7 - -m =
i (3
=S =217 -0 )T - )

i
Sum overT(i -n,j —m)2 is an energy of template which is

disregarded as a constant. Sum oh(iarj)z is energy of an
input image under the template and is neglectedemund
assumption to be a slow changing term. The sum over
I(i,j)T(i—n,j—m) is a definition of a so called cross-
correlation.

Correlation has a few desirable properties for tatep
matching task. The main two advantages are itsstolss to
noise and comparatively low computational costregfiency
domain. Correlation of two functions in spatial domis a
simple inverse transform of product of their Fourie
spectrums:

f Og=FG 4)

where C denotes correlations and G are Fourier spectrum
of £ and complex conjugate of Fourier spectrum ¢f,
respectively.

Correlational methods were successfully used ireabj
detection, image registration, image recognitioreren
reconstruction and so on.

The problems arise when one tries to detect objeitts
complex shape and texture variations. To detech sac
complex object it is required to match input imagéh all
possible variations of object shape and textureadaunt all
of those variations can very computationally compileus
impractical task.

2.2. Dynamical template object detection

Suppose'r(b) is a template image, whegg is a parameter
which responsible for shape and texture variatinrtemplate
object. Straightforward approach to detect suctolgject on
input image| would be to correlate it with a set of templates



{T(ig0)|iO[-m;M]} that covers all possible variations in
object appearance. But such number of matchingmmift
image with different variations of template, in geal, is very
computationally heavy task.

Under assumption of smoothness computational cbst o
this task can be trade on accuracy of a methodus eissume
that small changes of parameter vegiocause small changes
in correlation picture. The assumption suggestst tha
correlation pictures of two templates that differsome small
Ab with an input imagg do not qualitatively dissimilar, but
slightly differ only in amplitude, position and widof the
correlational peaks.

Based on the smoothness assumption and given @ set
correlation pictures{ci} corresponding to the set of

templates {T(iAb)|i D[—M;M]} we can assume that
summation over correlation pictures s{{ti} does not
changes qualitative picture of cumulative corredoge
com . Qualitatively steadyc®™ means that positions
(X;“axy;“ax) of all main peak maximums are not changed.
Although the relative values amplitudes of thosakgecan be
different. Now by using the property of cross-ctatien

(5)

instead of summation OVE{Ci} we can first sum over all

templates{'r(mb)“ D[—M;M]} and only than correlate the
result with input image

Z{Ci} =ZI (T (idb) =1 E{ZT(iAb) :

fO(g+h)=fOg+ f Oh,

(6)

With such approach computational cost of crossetation
for dynamical template is equal to cross-correfatigith
regular template. All the computation complexitgslion the
creation of sum over a S@t(iAb)U D[— M: M]} . Advantage
in this case is that sum oveT(idb)|i D[—M;M]} is
computed only once during training stage. So detect
process per se remains low cost.

2.3. Efficient computation of template sum

The key moment in this approach is to be able ieffity
generate sum over a set of template images
{T(igo)|io[-m;m]} . Straightforward computation of
{T(igo)|io[-m;m]} for complex objects  with
multidimensional parameter vectgr would be impractical.
In case of having proper analytical description fop) .
parameter vectop can be simply integrated out, what is
equivalent to summation over(ib)|iO[-M;M]} when
4o - 0.

In our opinion there are a few state of the arthods
most suitable for object image generation. Those aative
shape models ASM [2], active appearance models (AR}
and morphable models (MM) [4]. After training, tleos
methods are able to generate modeled object imagbs
intrinsic shape and texture variations.

For computational simplicity here is regarded bjnedge
images of objects. Usage of binary edge imagesiaderably

simplifies computations and also provides certawariance
to brightness changes and lightning conditions.

Active shape models (ASM) were taken as a basis of
object edge image modeling. On this stage pieceliisar
approximation was used for mathematical descriptafn
object edges. ASM are statistical models of shapey
represent the object as a s)et={x1,...xn,yl,...yn} of key
point coordinates. The basic ASM consist of meaapsh
vector Y and matrix P that holds information on allowed

variations and restrictions on shape variation.pfaduce a
new shape ASM uses the following equation

X=X+Pb @)

where y is a key point coordinate set of a new shape land
is a parameter vector of generated shapeThis paper does
not concerned with ASM training and usage so isteck
readers are referenced to [2] for more detailshigubject.

But ASM mathematical model (7) cannot be used & it
to solve our task. The problem is that model tasean input
initial conditions  (location and affine group of
transformation), parametegs and (i,j) pixel of generated
object and as an output give coordinafgsy) and pixel
intensity on output image. To be suitable for thasticular
task image generation method given the input initia
conditions (location and affine group of transfotima),
parametery and output image coordinat(},s, y) should give
as an output pixel intensity of generated objeotd® this we
integrate it into image resampling method. In casecobject
generation methods provide two important functicetuired
for resampling. First isf (x,y,b) - texture function, second is
m(u,v,b) - coordinate mapping function. Giveh(x,y,b)
and m(u,v,b) resampling can be written as follows

T(x,y,b)=

= JJ f (u,v)h(x -my(uv.b)y-m, (”'va))dudv (8)

where f(u,v) iS a mean texture functionf(u,v) = f(u,v,O)),
h(x) is a low-pass filter andnx(t,b) and my(t,b) are the
mapping functions ok and y coordinates respectively. Not
only there is no simple analytical solution to (&)t also
numerical computation would be unreasonably expenfgr
a given task.

ASM provides coordinates of object key points and
connecting them lines form a piecewise linear ayipmation
of an object edge image. Given such a piecewiseatin
approximation integration in (8) from integral oven area
reduces to an integral along a edge lines, whateliminates
f(x,y,b) from under the integral (because of a binary edges
f(x,y,b) is equal tol only along the line of integration and

0 everywhere else)
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where k is an index of a edge line segmentis a parameter
in parametric representation of Iinelsl,)‘f(t,b) and m';(t,b)

are piecewise linear approximations of mapping tiens for
x and y coordinates respectively. Piece-wise linear

approximation for mapping function has the follogiiorm
ml(t.b) = % + (%2 - Xt }+ R+ (A2 R bt

Ty T (10)
mi (t.b) = Vie + (V2 - Vi k+YRco + (YRZ-YR! bt

where (X%y%) and (szyf) are thek™ line end points,
(XPkl,XPkZ) and (VH},yPkl) are the values of mapping
parameters w(i&?&) and (ikz VE) coordinates.

Fourier transform of a sum ov{er(mb)“ D[— M: M]} is

now given by

A

F(wyv)= J IIT(x,y)e_Z”(WW)dxdy db

A

(11)

By substituting (9) into (11) and changing ordeirgégration
and summation we get

F (w,v) =

- Zj TF{h(X -m(t,b),y - m (t,b))}(w,v)dbdt (12)

k 0-4

where F{f}(w,v) denotes Fourier transform of a functidn
By applying shift property of Fourier transform(tt2) we get

F (W,v) =

1A
- F{h}(W,V)Z J Ie‘z’* fomt ) (t0) gy (13)
k 0-2

where F{h}(w,v) is a Fourier transform of low pass filter.

There is no simple analytical solution to (13).t8anake this
task practical integration ovet is reduced to simple
summation.

F(w,v):
A
= F{h}(w,v)z J e_m(wmt(j‘b)wmb(j‘b))db (14)
I -2
where sum overj means summation over all edge points
from f(x,y). Basically what this reduction does is it
considersf (x,y) to be discrete image of object edges thus
makes it more practical.
Now consider in (14) the integral over parametestwe

b . Without loss of generality assumb to be one-
dimensional vector

A
Jbbiominb ol
-1

3 (15)

= e_Zﬁ(WXJ +VyJ)J.e_2ﬂ(WPJX+VPJy))db
-A
where (xJ ,yj) is a discrete coordinates ¢gf edge point and

P, P’ are values of mapping functions ifi edge point for

x and y coordinates respectively. Now integration of (15)
gives the following

j. _zﬂ(WPJX“'Vpr)"dbz e—2ﬁ(ijx+vpjy)a

e
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As a result of integration we obtain an expressiwhijch
actually is nothing else but definition of @nc function
through complex exponent up to constait.

Thus the final expression for Fourier transformaafum over

{T(ig0)|iO[-M;M]} is now given by

(16)

F(W,v):
= ZAF{h}(W,v)Z e_2ﬁ(wxj ;) sinc(277(WPjX + vP]-y)) 17
i
As one can see computation complexity E){wv) is not
bigger from computational complexity of a standdiscrete
Fourier transform.F (w,v) should be computed only once on

learning stage. So giveﬁ(w,v) object detection process is
now straightforward and consist of three simplepstea)

computation of input imagq Fourier transformF' ; b)
multiplication of F(w,v) with complex conjugate of' ;

computation of inverse Fourier transform IF)(W,V) F'. As

a result of those steps we obtain correlation pic@i. Peaks
on this correlational picture denote object of et most
probable locations.

3. Experimental results

Rentgenographic image of pipe weld was chosen abpatt

of interest. Depending on a relative position gfepiveld to
source of x-rays radiation we get different ellifike shape
images of pipe welds. For tasks of radiographic
nondestructive testing it is important to be ahdedetect
position of welds on radiographic images.

Developed approach was tested on synthetic imafies o
pipe welds. Edges of welds were modeled by pieeelingar
approximation of key points obtained by ASM tramin
Model was reduced to consist of only one paramgter
Reasonable variation range for this parameter [y\@{;-z,z].

For testing, synthetic set of object images witlffedent
values of parametgs were generated. Before computation of
(4) test image was blurred by gaussian-type fitbaisk. This
is made to achieve more noiseless correlation i@aad thus



more steady detection results. Examples of thosergeed
images are gathered in test image shown on Fig. 1.

A number of occlusions in a form of objects witlffelient
shapes were added to image (Fig. 2) to compliteteesk of
object detection. After computation of (17) and #4)a result
we obtain a correlation picture shown at Fig 3.r€lational
picture has a complex structure with many correfsl
peaks. Nevertheless, lots of those peaks cantbeefil out by
the absolute values of their amplitudes. Cati@hal peaks

Figure 1: A set of synthetic test images with different
parametery . Top row from left to righth =-1.8, b=-1;
bottom row from left to righth =1, b=2 -
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Figure 2: A set of synthetic test images with different
parametery in clutter environment.

for modeled object have considerably bigger vateapared
to added noise objects.

Three biggest maximum correlational peaks were doun
Amplitude values of those peaks were consideraliges
among all the other peaks. This three peak locatiwith
precision up to 93-98% correspond to the true lonabf
modeled object. Even though correlational peak ffanth
object (object withp = 2) indicates the true location of an
input image it has much smaller amplitude than dltger
three. Such amplitude value for forth object is sel by
parameter valug to be on the border of integration limits.

Figure 3: Correlation picture for test image Fig. 2.

Accuracy of a proposed method is satisfactory asa loe
improved by using more precise approximation used i
method. As experimental results show the proposethad
can be successfully used for object detection afadyical
objects. The only requirement for such objectsuifilliment

of smoothness assumption.
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