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Abstract 

New correlation-based approach for object detection is 
proposed. Method for varying shape object detection is 
developed. Promising results were obtained by the proposed 
method on synthetic images. 

1. Introduction 

Object detection is one of the hardest problems in computer 
vision. It is virtually impossible to extract superior in general 
approach from variety of existing up to date object detection 
methods. This is caused by the complexity of the given task. 
Any particular approach is developed and can be considered as 
superior only for a certain class of objects. Existing object 
detection methods can be divided on two classes. Those are 
feature- and template-based techniques. Feature-based 
methods represent an object image by a set of features and 
corresponding them spatial relations, thus they neglect certain 
amount of information about an object. On the other hand, 
template-based methods use complete image of an object, but 
majority of those methods are unable to deal effectively 
enough with variations in shape or texture, otherwise it 
becomes very computationally expensive. 

This paper deals with template-based paradigm. It 
considers template to be dynamical model of given object 
image and gives computationally efficient solution to the 
object detection by matching with such a dynamical template.  

2. Dynamical template matching 

This section formulates the problem of template-based object 
detection. It also reveals existing problems of this approach 
connected with stationarity of template image. There is 
proposed an approach for efficient correlational object 
detection, which is based on dynamical template matching. 
Under dynamical template we understand an object image 
template that is able to change its shape depending on some 
parameters. It is shown how such technique can be done in 
computationally efficient way. 

2.1. Correlational template matching 

In general template matching consists of comparison of input 
image I  with template T  in order to find coordinates )y,x(  

of the best match [1]. In general, any suitable metric M  can 
be chosen as the degree of matching. One of the most practical 
and common used metric is a sum of squared distances (SSD): 

 ( ) ( ) ( )( )∑ −−−=
j,i

2mj,niTj,iIm,nM . (1) 

Straightforward utilization of SSD can be computationally 
expensive so it is more convenient to use cross-correlation as a 
kind of fast SSD approximation 
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It follows from decomposition: 
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Sum over ( )2mj,niT −−  is an energy of template which is 

disregarded as a constant. Sum over ( )2j,iI  is energy of an 
input image under the template and is neglected under 
assumption to be a slow changing term. The sum over 

( ) ( )mj,niTj,iI −−  is a definition of a so called cross-
correlation. 

Correlation has a few desirable properties for template 
matching task. The main two advantages are its robustness to 
noise and comparatively low computational cost in frequency 
domain. Correlation of two functions in spatial domain is a 
simple inverse transform of product of their Fourier 
spectrums: 

 GFgf =∗  (4) 

where ∗  denotes correlation, F  and G  are Fourier spectrum 
of f  and complex conjugate of Fourier spectrum of g , 
respectively. 

Correlational methods were successfully used in object 
detection, image registration, image recognition, stereo 
reconstruction and so on. 

The problems arise when one tries to detect objects with 
complex shape and texture variations. To detect such a 
complex object it is required to match input image with all 
possible variations of object shape and texture. To account all 
of those variations can very computationally complex thus 
impractical task. 

2.2. Dynamical template object detection  

Suppose ( )bT  is a template image, where b  is a parameter 
which responsible for shape and texture variations in template 
object. Straightforward approach to detect such an object on 
input image I  would be to correlate it with a set of templates 



( ) [ ]{ }M;Mi|biT −∈∆  that covers all possible variations in 
object appearance. But such number of matchings of input 
image with different variations of template, in general, is very 
computationally heavy task. 

Under assumption of smoothness computational cost of 
this task can be trade on accuracy of a method. Let us assume 
that small changes of parameter vector b  cause small changes 
in correlation picture. The assumption suggests that 
correlation pictures of two templates that differ on some small 

b∆  with an input image I  do not qualitatively dissimilar, but 
slightly differ only in amplitude, position and width of  the 
correlational peaks. 

Based on the smoothness assumption and given a set of 
correlation pictures { }iC  corresponding to the set of 

templates ( ) [ ]{ }M;Mi|biT −∈∆  we can assume that 

summation over correlation pictures set { }iC  does not 

changes qualitative picture of cumulative correlograme 
cumC . Qualitatively steady cumC  means that positions 

( )max
j

max
j y,x  of all main peak maximums are not changed. 

Although the relative values amplitudes of those peaks can be 
different. Now by using the property of cross-correlation 

 ( ) hfgfhgf ∗+∗=+∗ , (5) 

instead of summation over { }iC  we can first sum over all 

templates ( ) [ ]{ }M;Mi|biT −∈∆  and only than correlate the 
result with input image 
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With such approach computational cost of cross-correlation 
for dynamical template is equal to cross-correlation with 
regular template. All the computation complexity lies on the 
creation of sum over a set ( ) [ ]{ }M;Mi|biT −∈∆ . Advantage 

in this case is that sum over ( ) [ ]{ }M;Mi|biT −∈∆  is 
computed only once during training stage. So detection 
process per se remains low cost. 

2.3. Efficient computation of template sum 

The key moment in this approach is to be able efficiently 
generate sum over a set of template images 

( ) [ ]{ }M;Mi|biT −∈∆ . Straightforward computation of 

( ) [ ]{ }M;Mi|biT −∈∆  for complex objects with 

multidimensional parameter vector b  would be impractical. 
In case of having proper analytical description for ( )bT , 

parameter vector b  can be simply integrated out, what is 
equivalent to summation over ( ) [ ]{ }M;Mi|biT −∈∆  when 

0b →∆ . 
In our opinion there are a few state of the art methods 

most suitable for object image generation. Those are active 
shape models ASM [2], active appearance models (AAM) [3] 
and morphable models (MM) [4]. After training, those 
methods are able to generate modeled object images with 
intrinsic shape and texture variations.  

For computational simplicity here is regarded binary edge 
images of objects. Usage of binary edge images considerably 

simplifies computations and also provides certain invariance 
to brightness changes and lightning conditions.  

Active shape models (ASM) were taken as a basis of 
object edge image modeling. On this stage piecewise linear 
approximation was used for mathematical description of 
object edges. ASM are statistical models of shape. They 
represent the object as a set { }n1n1 y,...y,x,...x=χ of key 

point coordinates. The basic ASM consist of mean shape 
vector χ  and matrix P  that holds information on allowed 
variations and restrictions on shape variation. To produce a 
new shape ASM uses the following equation 

 Pb+= χχ  (7) 

where χ  is a key point coordinate set of a new shape and b  
is a parameter vector of generated shape χ . This paper does  
not concerned with ASM training and usage so interested 
readers are referenced to [2] for more details on this subject. 

But ASM mathematical model (7) cannot be used as it is 
to solve our task. The problem is that model takes as an input 
initial conditions (location and affine group of 
transformation), parameter b  and ( )j,i  pixel of generated 

object and as an output give coordinates ( )y,x  and pixel 
intensity on output image. To be suitable for this particular 
task image generation method given the input initial 
conditions (location and affine group of transformation), 
parameter b  and output image coordinates ( )y,x  should give 
as an output pixel intensity of generated object. To do this we 
integrate it into image resampling method. In our case object 
generation methods provide two important functions required 
for resampling. First is ( )b,y,xf  - texture function, second is 

( )b,v,um  - coordinate mapping function. Given ( )b,y,xf  

and ( )b,v,um  resampling can be written as follows 

 

( )
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where ( )v,uf  is a mean texture function (( ) ( )0,v,ufv,uf = ), 

( )xh  is a low-pass filter and ( )b,tmx  and ( )b,tmy  are the 

mapping functions of x  and y  coordinates respectively. Not 
only there is no simple analytical solution to (8) but also 
numerical computation would be unreasonably expensive for 
a given task. 

ASM provides coordinates of object key points and 
connecting them lines form a piecewise linear approximation 
of an object edge image. Given such a piecewise linear 
approximation integration in (8) from integral over an area 
reduces to an integral along a edge lines, what also eliminates 

( )b,y,xf  from under the integral (because of a binary edges 

( )b,y,xf  is equal to 1  only along the line of integration and 

0  everywhere else) 

 ( ) ( ) ( )( )∑∫ −−=
k

1
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k
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where k  is an index of a edge line segment, t  is a parameter 

in parametric representation of lines, ( )b,tmk
x  and ( )b,tmk

y  

are piecewise linear approximations of mapping functions for 
x  and y  coordinates respectively. Piece-wise linear 
approximation for mapping function has the following form 
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where ( )1
k

1
k y,x  and ( )2

k
2
k y,x  are the thk  line end points, 

( )2
k

x1
k

x P,P  and ( )1
k

y1
k

y P,P  are the values of mapping 

parameters in ( )1
k

1
k y,x  and ( )2

k
2
k y,x  coordinates. 

Fourier transform of a sum over ( ) [ ]{ }M;Mi|biT −∈∆  is 
now given by 

 ( ) ( ) ( )∫ ∫∫
−

+−
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By substituting (9) into (11) and changing order of integration 
and summation we get 
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where { }( )v,wfF  denotes Fourier transform of a function f . 
By applying shift property of Fourier transform to (12) we get 
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where { }( )v,whF  is a Fourier transform of low pass filter. 
There is no simple analytical solution to (13). So to make this 
task practical integration over t is reduced to simple 
summation.  
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where sum over j  means summation over all edge points 

from ( )y,xf . Basically what this reduction does is it 

considers ( )y,xf  to be discrete image of object edges thus 
makes it more practical. 

Now consider in (14) the integral over parameter vector 
b . Without loss of generality assume b  to be one-
dimensional vector 
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where ( )jj y,x  is a discrete coordinates of th
j  edge point and 

x
jP , y

jP  are values of mapping functions in th
j  edge point for 

x  and y  coordinates respectively. Now integration of (15) 
gives the following 
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As a result of integration we obtain an expression, which 
actually is nothing else but definition of a csin  function 
through complex exponent up to constant λ2 . 
Thus the final expression for Fourier transform of a sum over 

( ) [ ]{ }M;Mi|biT −∈∆  is now given by 
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As one can see computation complexity of ( )v,wF  is not 
bigger from computational complexity of a standard discrete 
Fourier transform. ( )v,wF  should be computed only once on 

learning stage. So given ( )v,wF object detection process is 
now straightforward and consist of three simple steps: a) 

computation of input image I  Fourier transform IF ; b) 

multiplication of ( )v,wF  with complex conjugate of IF ; 

computation of inverse Fourier transform of ( )v,wF IF . As 

a result of those steps we obtain correlation picture C . Peaks 
on this correlational picture denote object of interest most 
probable locations.  

3. Experimental results 

Rentgenographic image of pipe weld was chosen as an object 
of interest. Depending on a relative position of pipe weld to 
source of x-rays radiation we get different ellipse-like shape 
images of pipe welds. For tasks of radiographic 
nondestructive testing it is important to be able to detect 
position of welds on radiographic images.  

Developed approach was tested on synthetic images of 
pipe welds. Edges of welds were modeled by piecewise linear 
approximation of key points obtained by ASM training. 
Model was reduced to consist of only one parameter b . 
Reasonable variation range for this parameter was [ ]2,2b −∈ . 
For testing, synthetic set of object images with different 
values of parameter b  were generated. Before computation of 
(4) test image was blurred by gaussian-type filter mask. This 
is made to achieve more noiseless correlation picture and thus 



more steady detection results. Examples of those generated 
images are gathered in test image shown on Fig. 1.  

A number of occlusions in a form of objects with different 
shapes were added to image (Fig. 2) to complicate the task of 
object detection. After computation of (17) and (4) as a result 
we obtain a correlation picture shown at Fig 3. Correlational 
picture has a complex structure with many correlational 
peaks. Nevertheless, lots of those peaks can be filtered out by 
the  absolute  values  of  their amplitudes. Correlational peaks  

 

Figure 1: A set of synthetic test images with different 
parameter b . Top row from left to right: 8.1b −= , 1b −= ; 

bottom row from left to right: 1b = , 2b = . 

 

Figure 2: A set of synthetic test images with different 
parameter b  in clutter environment.  

for modeled object have considerably bigger values compared 
to added noise objects. 

Three biggest maximum correlational peaks were found. 
Amplitude values of those peaks were considerably bigger 
among all the other peaks. This three peak locations with 
precision up to 93-98% correspond to the true location of 
modeled object. Even though correlational peak for fourth 
object (object with 2b = ) indicates the true location of an 
input image it has much smaller amplitude than the other 
three. Such amplitude value for forth object is caused by 
parameter value b  to be on the border of integration limits. 

 

Figure 3: Correlation picture for test image Fig. 2. 

Accuracy of a proposed method is satisfactory and can be 
improved by using more precise approximation used in a 
method. As experimental results show the proposed method 
can be successfully used for object detection of dynamical 
objects. The only requirement for such objects is fulfillment 
of smoothness assumption. 
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