
Orders Based Transparent Parallelizing Technology

Vitaliy D. Pavlenko, Victor V. Burdeinyi

Department of Computer Control Systems
National Polytechnical University of Odesa, Odesa

pavlenko_vitalij@mail.ru
Department of Mathematical Software of Computer Systems

I.I. Mechnikov National University of Odesa, Odesa
vburdejny@gmail.com

Abstract

This paper proposes a new approach to parallel applications
development, showing high speed and low labour
intensiveness of creating new parallel applications and
parallelizing existing ones. The basic principles of the
proposed technology are described. The possible ways of
implementation of these principles are proposed. Parallel
execution characteristics analysis method is proposed. The
result of experiment is given to show high efficiency of
proposed technology.

1. Introduction
Parallel computing is the subject of a lot of researches
nowadays [1]. It’s caused by large amount of problems that
cannot be solved fast enough on single modern computers. For
example, that’s the problem of Volterra series based nonlinear
dynamic systems models identification [2, 3], problem of full
scan based comparison of features diagnostic value [4, 5],
modeling problems and so on [6–10].

Modern parallel architectures can be splitted into three
large groups – parallel computers with shared memory,
clusters and distributed systems. Each group has own
advantages and disadvantages and own specific problems. In
this approach we use clusters. Clusters are very popular
nowadays because of comparatively low cost, high speed and
high scalability. For example, 72% of computer systems of
Top 500 list are clusters [11].

There are a lot of problems in the field of parallel
computing that should be solved. One of not completely
solved problems of parallel computing is the problem of
development of tools for parallel programming. The main
obstacle for creating such tools is the complicatedness of
finding parts of program that can be executed in parallel.
Modern programming technologies usually allow programmer
to use popular imperative programming languages to make
parallelizing of existing applications easier. It’s hard to
discover the potential parallelism in programs in these
programming languages automatically. That’s why modern
parallel programming technologies use either to provide user
some tools for declaring the parts of program that can be
executed in parallel or to provide user only low–level tools
for organizing computers communication. The second way is
also much more popular nowadays (for instance, MPI among
the processes for clusters, uses it). It makes parallel
application development and debugging much harder, but
technology, which is a de facto standard for communication

gives programmer more control over the efficiency of created
programs.

The purpose of this paper is to create a high level cluster
computing technology that allows user to develop parallel
applications fast enough for certain wide class of algorithms.

2. Existing technologies of parallel applications
development

There’s one general tendency about modern technologies and
software for development. An attention is paid not only to
traditional requirements (such as efficiency of created
applications), but also to the requirement about high speed and
low labor intensiveness of software development. It seems that
this tendency is caused by low cost of computer work time
and high cost of programmer work time. But this tendency did
not affect parallel computing technologies much. It seems to
be caused by big cost of parallel computers work time. High
cost of parallel computer work time seems also to be the
reason of popularity of low–level technologies that give the
programmer more control over the computer and allow
programmer to minimize program execution time while the
time and the labour intensiveness of program development are
not so critical. A similar situation can be observed in area of
distributed computing where mainly low–level tools are being
developed nowadays.

Therefore the purpose of this approach is creation of
parallel computing technology that follows the requirements:
• High level of technology. It is a well–known situation in

the history of programming when some features have
been abandoned to get some advantages. For example,
“go to” operator has been abandoned to make source
understanding easier. So this technology should not
provide low–level operations (such as sending and
receiving messages) to user, but the set of provided
high–level operations should be enough for development
of efficient parallel applications. This requirement
should make parallel applications development much
faster and easier.

• Transparency of parallel architecture. It is much easier to
think about writing a program for one processor, so the
technology should hide parallel architecture from user
where possible.

• Efficiency of the technology. Overhead, caused by the
technology, must be minimal. Also the technology must
enable user to create efficient parallel implementations
for wide enough class of applications.

• High speed and low labor intensiveness of parallel
applications development. It also means high speed and
low labor intensiveness of porting existing applications.

3. Technology of orders based transparent
parallelizing

We assume that we have selected some set of procedures in
the program. Each procedure should not work with any data
during execution except parameters and temporary (and
inaccessible outside the procedure) data structures. Each
parameter of each selected procedure should be passed by
value. Execution of program must mean execution of certain
selected procedure. This assumption imposes significant
limits on program. For example, it forbids using global
variables or I/O devices. But it is shown below that these
limits can be loosened. For example, work with global
variables and I/O devices can be allowed is some specific
requirements are met.

The example that will be used to illustrate the technology
is shown on Fig. 1:

Figure 1: Illustration of a sample program.

We show procedure execution time with a rectangle (time
goes from left to right). If one procedure calls another one, a
part of rectangle is shaded to show called procedure execution
time (there are no nested calls in this example). Lengths of
rectangles and their parts are proportional to the time of
execution of corresponding program parts. A circle is used to
show input parameters and a rhombus is used to show output
ones. It is considered that all input parameters are known
already at the moment of program execution start. Lines
connect moments of getting some values and moments of
their first usage. Computations, performed by one processor,
are shown with a dotted rectangle.

The first principle of offered technology introduces the
concept of an order. An order is defined as the minimal unit
of work that should be executed on one computer and cannot
be splitted into smaller parts. Such a unit of work is defined
as execution of one procedure without execution of
procedures it calls. Each procedure call is replaced with
creation of a new order that should be executed by some
computer of cluster (we will call such procedure call “making
an order”). One of selected procedures should be marked as
main one to define program entry point (and all input and
output data of program should be passed through parameters
of this procedure).

This principle is illustrated on Fig. 2. It is considered that
three orders are executed by different processors and their
execution starts immediately after making corresponding
orders. Vertical lines show the moments of time when the
orders are made.

A lot of algorithms contain intervals of time between the
moments of getting some values computed and the moments
of first usage of these values. It is often possible to make such
intervals bigger by applying some changes to the order of
computations. If there are no such intervals in some algorithm,
it means that each operation should not be executed before the
previous one is over, so we cannot create parallel

implementation of this algorithm at all. When we perform
procedure calls in common programming languages, the caller
procedure continues its execution only after the called one is
over. In other words, we can tell that the caller procedure
starts waiting for output parameters of the called procedure in
the moment of call and stops waiting in the moment when the
called procedure finishes its execution. The second principle
proposes to continue execution of caller procedure after the
call and to start waiting only in the moment of first request to
output parameters of called procedure. If called procedure is
already executed in the moment of first request, we should not
start waiting at all.

This principle is illustrated on Fig. 3.

Figure 2: An illustration of the first principle of
offered technology.

Figure 3: An illustration of the second principle of
offered technology.

We use dashed lines to show moments when an order
stops to wait for some value. This diagram can be built from
previous one by maximal possible left shift of all
computations that keeps the following requirement met: each
value is used only after it is computed.

An order means a unit of work but is based on parts of
program source, marked as procedures. But procedures are
terms of programming language, and programmers can have
different reasons to mark parts of source as procedures. These
reasons can have nothing in common with getting high
efficiency of parallel application. Theoretically there’s no
problem about that: we can easily split a procedure with big
execution time into a few smaller ones and any unneeded
splitting only changes the order of computations and does
affect the efficiency of the program. But from the practical
point of view the procedures with small execution time and
big number of calls cause big overhead. So we should allow
programmer to call selected procedures in standard way.

Offered technology is based on task parallelism and
MIMD model. It uses only four computers communication
operations: getting an order, getting results of order
execution, making an order and sharing results of order
execution. There are only two operations that are accessible
to user: making an order and getting a value, computed in
another order. It means that we can make parallel applications
development much easier by hiding computer communication
operations from user. But that also means that a framework
that implements the proposed technology should take care or
efficient usage of network itself. Note that a program in this

technology is a set of instructions for a whole cluster (unlike
programs in MPI technology that are a set of instructions for
each computer).

4. Formal description of technology
Offered technology can be used to create parallel applications
on many structural procedural or object–oriented
programming languages. We will use terms of Java
programming language in the following description.

Requirements about the selected set of procedures can be
explained in the following way. There must be a set of static
methods in the program. Each of them can only perform some
computations and execute other selected methods using some
mechanism, provided by the framework. Each selected
method can work only with its parameters and some
temporary data structures. We do not take care about
traditional procedure calls because they do not differ from
usual computations. It is impossible to pass all parameters by
value in a lot of programming languages, including Java. So
let’s replace this requirement with the following one: if we
replace a pointer to some data with a pointer to copy of that
data, time and result of method execution should stay the
same. If data contains some pointers inside, this should also
be true for it.

We can make two conclusions from these requirements:
two concurrently executed procedures do not affect each
other and the procedures can pass data to each other only
through parameters. We can also tell that if procedure A calls
procedure B and we replace call of procedure B with applying
the results of its execution to values, passed as parameters, we
will not change result of execution of A and will make time
of execution of A lower by the time of execution of B. So we
are able to execute B on another computer as proposed in the
first principle of offered technology.

However, the first principle does not allow us to get
acceleration by using many computers instead of one. The
second principle describes the way to allow more that one
computer to work in the same time.

These two principles split the operators in the source of
user code into three groups: operators of making orders,
operators of data request and operators of computations. So
we can describe algorithms we need.

Scheduler is a part of client that makes decisions about
continuation of execution of previously suspended order or
getting a new one from server after some processor is being
freed. Depending on used algorithms the scheduler can either
work on different clients independently or can use server for
coordination.

The main question about implementing the proposed
approach as a parallel computing framework is a question
about the way of second principle implementation because
the second principle means that the system should work in a
little unusual mode. In order to implement the second
principle we have to find each point of program that contains
access to data that can be unknown and to add a verification
of presence of that data and getting it from server if needed.
There are a few ways to do that:
• We may ask user to add such verifications. A small

advantage of this method is possibility of optimization of
such verifications because user can known the places
where such verifications are not needed and not to place
them there. But the main disadvantage of this method is

that is causes low speed and high labor intensiveness of
parallel applications development. Also this method
requires user to pay a great attention to such verifications
because mistakes in them can cause bugs that are hard to
reproduce, find and fix.

• We may analyze the source of the program and add
verifications there needed. The main advantage of this
method is hiding the verifications from user. The
problem of this method is that it’s hard to find places in
program where we can be sure that checks are not
needed.

• We can analyze compiled version of program. This
variant makes sense only if program has been compiled
to some kind of bytecode which is easy to analyze – for
example, Java bytecode or MSIL in .NET Framework.

• If used programming language is object–oriented, we
can ask user to implement a class for each data type,
used as procedure parameter, and to implement data
getting logic is the methods of these classes that provide
access to encapsulated data.

The first principle means that we have to provide some
mechanism of making orders to user. We can do that either
with applying changes to language (by patching compiler or
adding a preprocessor) or without applying any changes. In
the second case we can simply generate a method for making
an order for each selected method. These methods can be
generated either as source or as binary code (second variant
can be better in Java or .NET Framework). There are a few
ways that can be used for declaring the selected set of
procedures:
• User can declare procedures list in a separate file.
• User can mark selected procedures with specific

comments.
• User can mark procedures with annotations (in Java

1.5.0 or above or C#).
• A modified variant of programming language can be

used.

5. Computing emulation

Computing emulation is a method for estimating program
execution time and finding bottlenecks. Its main idea is the
following: we can lower the time of test run of parallel
application by skipping some computations that are going to
take much time. Two conditions should be met for a block to
make it possible to skip it. In the first place, estimation of
execution time of such block should be known. In the second
place, it should be possible to continue this test run without
knowing the values that are going to be computed in the
block. We can warrant that by assuming that values,
computed in the block, should not be used in any conditional
operators, and we can use asymptotic estimation of blocks
execution time in order to estimate block execution time for
specific input data.

The proposed method consists of four stages. In the first
one user marks a set of blocks in the source of the program.
Each marked block should meet the following requirements:
estimation of block execution time should be known and it
should be possible to compute it quickly; values, computed in
the block, should not be used in any conditional operators;
block should not make any calls or requests for data; blocks
should not be nested; user should implement alternative

version of each block that works as quickly as possible and
makes all further computations work properly. Each marked
block should be surrounded with sending notifications to
computing support environment about block execution time
and choosing the implementation of the block to be executed.
For instance, if a block multiplies two n–by–n matrices by
definition, it should declare execution time n*n*n and should
have alternative implementation that creates a new n–by–n
matrix without its initialization. Also programmer has to
create a set of tests that run every marked block at least once.

During the second stage the tests are run in order to
estimate constant part of execution time asymptotic
estimation for marked blocks. In order to minimize the
influence of random variations of execution time, each test
has to be repeated for a few times.

During the third stage a test run of a program is done.
Alternative implementations of marked blocks are used, and
execution time of blocks is considered to be equal to its
estimation. If execution of marked blocks takes almost all the
time of a real run of the program, we can run the program run
fast enough. It has to be done either on every computer of the
cluster, or only once if time of execution of a sample program
is used as the unit of time. After the third stage we have
information about the orders of the parallel program that
contains the following information about each order: duration,
moments of data requests, moments of providing data.

On the fourth stage simulation of execution of parallel
application is performed. Only the information about orders,
gathered on the third stage, is used. After the fourth stage we
have information about the load of the cluster and about all
scheduling–related events that should happen during the real
run of the application. This information can be used to find
program execution time and to find information about
bottlenecks of the parallel application.

Each stage uses only the results of previous stages and
some specific information about the parallel application. First
two steps use the source of the application; third one uses its
input data and the fourth one uses information about the
cluster. Splitting the method into a set of stages makes it
possible to re–use results of some stages if something changes
in the parallel application and the cluster. For instance, user
can repeat only the fourth stage to find the configuration of
cluster if program execution time is limited.

6. Conclusions
This paper proposes a new parallel applications development
technology, based on transparent replacement of calls of some
methods with their execution on other computers of cluster.
This approach enables user to develop new and port existing
parallel applications of certain wide enough class fast enough,
making development cost much lower without significant
changes in applications efficiency. Offered technology has
been implemented as a framework on Java programming
language. Its efficiency has been proven by solving the
problem of determination of diagnostic value of formed
features diagnostics on a cluster of 2, 3, 5 and 10 computers.
The result of multiplication of execution time by number of
processors has grown by not more than 1.13% when using 2,
3 or 5 computers instead of one, and by not more than 3.25%
when using 10 computers instead of one during this
experiment.

A way of analysis of time characteristics of parallel
program execution is proposed.

7. References
[1] Voyevodin, V.V. and Voyevodin, V.V., Parallel

computations, BHV–Petersburg, Saint Petersburg, 2002
(in Russian).

[2] Pavlenko, V.D., “Estimation of the Volterra Kernels of a
Nonlinear System Using Impulse Response Data”,
Signal/Image Processing and Pattern Recognition:
Proceedings the Eighth All–Ukrainian International
Conference UkrOBRAZ’2006, August 28–31, 2006,
Kyjiv, Ukraine, pp. 191 – 194.

[3] Kolding, T.E. and Larsen, T. “High Order Volterra Series
Analysis Using Parallel Computing”,
http://citeseer.ist.psu.edu/242948.html

[4] Pavlenko, V. and Fomin, O. “Reconstruction of the
Parameters Space on the Base of Diagnostic Models of
Object with using Volterra Models”, Proc. of 5th Middle
Eastern Simulation and Modelling Conference
(MESM'2004), September 14–16, 2004, Philadelphia
University, Amman, Jordan, pp. 30 – 40.

[5] Pavlenko V. and Fomin A. “Methods For Black–Box
Diagnostics Using Volterra Kernels”, ICIM 2008: Proc.
2nd International Conference on Inductive Modelling,
September 15–19, 2008, Kyiv, Ukraine, рр.104–107,
ISBN 978–966–02–4889–2.

[6] Afanasiev, A.P., Khutornoy, D.A., Posypkin, M.A.,
Sukhoroslov, O.V., and Voloshinov V.V., “Grid
Technologies and Computing in Distributed
Environment”, Proc. of the III International Conference
“Parallel Computations and Control Problems”
PACO’2006, V.A. Trapeznikov Institute of Control
Sciences, Moscow, October 2–4, 2006, pp. 19–40, СD
ISBN 5–201–14990–1, www.paco.sicpro.org

[7] Pavlenko, V.D. and Burdejnyj, V.V. “Principles of
Organization of Orders Based Cluster Calculations Using
Implicit Parallelizing”, Proc. of the III International
Conference “Parallel Computations and Control
Problems” PACO’2006, V.A. Trapeznikov Institute of
Control Sciences, Moscow, October 2–4, 2006, pp. 670–
690, СD ISBN 5–201–14990–1, www.paco.sicpro.org

[8] Pavlenko, V.D. and Burdejnyj, V.V. “Cluster Computing
using Orders Based Transparent Parallelizing”, Proc. of
IEEE East–West Design & Test International Symposium,
EWDTS’07, Armenia, Yerevan, September 7–10, 2007,
pp. 83–88.

[9] Pavlenko, V. and Burdeinyi V. Computing Simulation in
Orders Based Transparent Parallelizing. ICIM 2008:
Proc. 2nd International Conference on Inductive
Modelling, September 15–19, 2008, Kyiv, Ukraine,
рр.168–171, ISBN 978–966–02–4889–2.

[10] Fissgus, U., A Tool for Generating Programs with Mixed
Task and Data Parallelism, Dissertation, University
Halle–Wittenberg, 2001, http://sundoc.bibliothek.uni–
halle.de/diss–online/01/01H119/prom.pdf

[11] 28th TOP500 List. http://www.top500.org/lists/2006/11

