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Abstract 

A method of identification of nonlinear dynamic systems, 
based on the models constructed as Volterra series with the 
use of pulse test signals, is proposed. To separate the response 
into partial components, the method based on differentiation 
of the target output signal with respect to the parameter – 
amplitude is applied. The errors of the identification method 
are analyzed. By the example of modeling a system with 
nonlinear feedback, the dependences of identification errors 
on the test signal amplitude are obtained. To increase the 
noise stability of the identification method, the smoothing of 
estimations of the Volterra kernels with the help of the 
wavelet transforms is used. 

1. Introduction 
In describing nonlinear dynamic systems and circuits the 
mathematical models in the form of Volterra integro-power 
series [1] find their increasing application. However, current 
applied algorithms of identification of nonlinear systems 
based on the Volterra series [2] do not yet allow using this 
mathematical tool to the full. It is caused by a series of 
reasons, most important of which is the essential influence of 
errors of measurements on the result of identification [3]. 
Another problem is that the identification of nonlinear systems 
as Volterra series includes the separation of the response of 
the system under study into partial components corresponding 
to separate terms of the Volterra series with subsequent 
determination of the multidimensional weight functions 
(Volterra kernels). 

One of the ways of the separation consists in composing 
linear combinations of the responses to the test signals of 
various amplitudes [4]. In paper [5] the values of the 
amplitudes of the test influences and corresponding 
coefficients were obtained, allowing to minimize the 
methodical error of the model splitting into partial 
components, caused by the influence of the Volterra series 
terms which order is higher than the determined term. In paper 
[3] the ways of identification based on the methods of 
regularization of ill-posed problems have been proposed.  

In the present work we propose a method of identification 
of nonlinear systems in the form of the Volterra series, based 
on the extraction of partial components of the system response 
with the help of differentiation of the target output signal with 
respect to the parameter – amplitude. The errors of the 
identification method are analyzed. By the example of 
modeling a system with nonlinear feedback, we obtain the 
dependences of the identification errors on the test signal 
amplitude. To increase the noise stability of the identification 
method we apply the smoothing of estimations of the Volterra 
kernels using of the wavelet transforms [6, 7]. 

 

2. Оn the Use of Volterra Series for 
Identification of Nonlinear Systems 

 
In the general case the "input-output" relationship for a 
nonlinear dynamic object can be represented in terms of the 
Volterra series as 
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where ( )tx  and ( )[ ]txy  are the input and output signals, 

respectively, ( )nnw τττ ,...,, 21  is the Volterra kernel of the 

n-th order and )(tyn  stands for the n-th partial component of  
the object response. 

Commonly, the Volterra series are replaced by a 
polynomial, with only taking several first terms of series (1) 
into consideration. Then the identification procedure consists 
in extracting the partial components with subsequent 
determination of Volterra kernels ( )nn ,...,,w τττ 21 . 
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where 0xxx ll −=∆ . 
We henceforth consider the case 00 =x  and 

0),...,,( 21 =kk xxxf , i.e. it is supposed that prior to signal 
injection the object is at rest (zero initial conditions). Function 

kf  depends also on parameter t, i.e. ),...,,,( 21 kk xxxtf , so 
that expression (2) can be written as 
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In the limit )(0 ∞→→τ∆ k  Eq.(3) turns into series (1). 

2. Estimation of Volterra kernels  
We use the method of extracting the partial components with 
the help of n-fold differentiation of the response y(a, t) with 
respect to parameter - amplitude a and the use of the 
derivative value at a=0 [5]. 

Injecting an input signal ax(t) where a is the scaling factor 
(signal amplitude), one has the following response of the 
nonlinear system: 
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To distinguish the partial component of the n-th order, 
differentiate the system response n times with respect to the 
amplitude: 
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Taking the value of the derivative at a=0, we finally 

obtain the expression for the partial component: 
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Given the function in the discrete form, the differentiation 
is performed numerically. The corresponding formulae for the 
first and second derivatives in finite (equidistant) differences 
read [6]: 
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(8) 
where  

0 0(0), (0), ( ), 2, 1,0,1,2iy y y y y y ia i′ ′ ′′ ′′= = = = − −
 

To find the Volterra kernel of the 2nd order we use the 
third and fourth formulae in (8). They allow us to find the 
values of the second derivative in node y0 using the values of 
the function in nodes y-2, y-1, y0, y1, y2. Actually, since the 
zeroth node value (at a=0) of the function is equal to zero, for 

extracting the 2nd order partial component it is necessary to 
conduct two experiments minimum, injecting signals of the 
same form and amplitude but of different polarity. 

After extracting partial component )(tyn  and applying 
additional processing one can determine the section of the 
Volterra kernel of the n-th order.For the diagonal section we 
have [7]: 
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where ),...,,(
^

tttwn  is the estimation of the the diagonal 

section of the Volterra kernel of the n order and τ∆  stands 
for the test pulse duration. 

For the lateral sections of multidimensional Volterra 
kernels of a nonlinear object we have the following 
approximate expression: 
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where ),...,( 1

^

nn ttttw −−  is the estimation of the lateral 
section of the Volterra kernel of the n-th order, obtained as a 

result of processing experimental data, ),...,,(
1 nttty δδ  

is the system reaction measured at instant t provided that the 
injected delta-like pulses are of amplitude a and duration τ∆  

and applied at instants t1,..,tn , respectively ( 1=tδ  
corresponds to an injected pulse at instant t while 

0=tδ means no injected pulse). 

3. Simulations 
To analyze the identification method, its accuracy and noise 
stability by computer modeling within the package of applied 
programs MATLAB we choose an object described by the 
following nonlinear differential equation: 

)()()()( 2 txtyty
dt

tdy
=⋅β+⋅α+                 (11) 

where α and β are constant coefficients (α=2.64 and β=1.45). 
For such an object the model in the form of three terms of the 
Volterra kernel under zero initial conditions reads: 
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The three first weight functions ( )nnw τττ ,...,, 21  for 
the given object are: 
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Setting τ1=τ2=τ3=t, we obtain the diagonal sections of the 
Volterra kernels of the 2nd and 3rd orders: 
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In estimating the errors of modeling of the diagonal 

sections of the Volterra kernels we used the root-mean-square 
error criterion: 
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where p is the number of counts in the observation time 

interval, wt  is the exact value of the Volterra kernel and tw
∧

 is 
the value of the Volterra kernel estimation obtained by 
processing experimental data (system responses) at discrete 
instants t's. 

In reality the target output signal is measured with some 
error, and one can consider it as a superposition of the target 
signal itself and white noise (errors of measurements, scaled 
as 1, 3, and 5% of the maximal value of the response). 

Table 1 contains the optimal areas (i.e. minimizing the 
identification error ε ) of signals under identification of the 
Volterra kernels of the second and third order. 

Table 1: Optimal areas of input pulse actions (S) 

Optimal areas of input pulse actions (S) at various 
response measurement errors (eps): n 

1 % 3 % 5 % 
2 0.70 0.9 1.1 
3 1.02 1.30 1.38 

 
Figs. 1,2 show the dependences of the identification error 

( ε ) on the area of the input pulse actions (S) in determination 
of the diagonal sections of the Volterra kernels of the second 
and third orders, respectively, at different errors of 
measurements of the response (eps). 

 

 
 

Figure 1: The dependence of the identification error (ε ) on 
the area of the input pulse actions (S) in determination of the 
diagonal sections of the Volterra kernels of the second order. 
1,2,3 – 1%, 3%, 5% measurement errors, respectively. 

 

Figure 2: The dependence of the identification error (ε ) on 
the area of the input pulse actions (S) in determination of the 
diagonal sections of the Volterra kernels of the third order. 
1,2,3 – 1%, 3%, 5% measurement errors, respectively. 

Figs. 3, 4, 5 represent the results of identification of the 
diagonal section of the Volterra kernels of the second order 
(n=2) at response measurement errors (eps) of 1, 3, 5%, 
respectively, with the areas of the input pulses taken from 
Table 1. Fig. 6 shows the same for n=3 and eps=1%. 

 

 

Figure 3: The result of identification of the diagonal sections 
of the Volterra kernels of the second order. 1 – results of 
identification, 2 – application of wavelet transforms, 3 – exact 
value of the Volterra kernel; eps=1%. 

 
In Table 2 the identification errors for n=2, 3 are given. 

Table 2: Identification errors (ε ) for n=2, 3 

Identification errors (ε)  
at various measurement errors 

1 % 3 % 5 % 1 % 3 % 5 % 
 
 

 n without application of 
wavelet transform  

with application of 
wavelet transform 

2 0.0085 0.0140 0.0219 0.0055 0.0077 0.0094 
3 0.0096 0.0174 0.0235 0.0061 0.0096 0.0112 

 
 



 

Figure 4: The result of identification of the diagonal sections 
of the Volterra kernels of the second order. 1 – results of 
identification, 2 – application of wavelet transforms, 3 – exact 
value of the Volterra kernel; eps=3%. 

 

Figure 5: The result of identification of the diagonal sections 
of the Volterra kernels of the second order. 1 – results of 
identification, 2 – application of wavelet transforms, 3 – exact 
value of the Volterra kernel; eps=5%. 

 

Figure 6: The result of identification of the diagonal sections 
of the Volterra kernels of the third order. 1 –results of 
identification, 2 – application of wavelet transforms, 3 – exact 
value of the Volterra kernel; eps=1%. 

4. Conclusion 
The use of the mathematical models based on the Volterra 
integro-power series for identification of nonlinear dynamic 
systems is one of the long-standing problems of the control 
theory. When determining the multidimensional weight 
functions (Volterra kernels), however, the problems arise in 
separating the n-th order partial components from the 
measured system response to a given perturbation and then in 
determining the n-dimensional Volterra kernel. Solving these 
problems is computationally unstable, and this leads to 
significant identification errors even at small deviations 
(measurement noises) of initial input data. 

We have investigated the errors of identification of a 
nonlinear system in the form of the Volterra series with the 
use of testing pulse signals, basing on the separation of the 
partial components by differentiation of the system response 
with respect to the parameter-amplitude. Computer 
experiments (within MATLAB) on the choice of the test 
signal amplitude are performed and the results of 
identification of the Volterra kernels of the 1st, 2nd and 3rd 
orders are presented. 

Application of the noise suppression procedure based on 
the wavelet transformation to estimations of the Volterra 
kernels allows us to obtain smooth solutions and to lower the 
identification error 1.5÷3 times. The presented dependences of 
identification errors on the area of testing actions in 
determining the diagonal sections of the Volterra kernels 
allow us to specify the range of optimal amplitudes of pulse 
actions for different levels of response measurement errors 
which correspond to the minimal errors of identification of the 
Volterra kernels. 
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