
Some considerations regarding software/hardware
implementation of DES algorithm for an RFID enabled device

Marius Cristian Cerlinca, Adrian Graur

Faculty of Electrical Engineering and Computer Science,
"Stefan cel Mare" University of Suceava, Romania

mariusc@eed.usv.ro, adriang@eed.usv.ro

Abstract

Let's suppose that you want to build some device that use
FPGA/ASIC technology and your system should provide a
certain level of security when dealing with data from external
world. This means that some data should be somehow
encrypted. Two important questions could appear in this
stage: first, what encryption algorithm should we use and
second, do we need a hardware implementation or software
one? In this paper we will provide some answers, taking in
consideration a real world application.

1. Introduction

First, let's describe our real world application that needed an
encryption algorithm. We developed a so-called "RFID hub"
(1) that use FPGA technology and is functioning almost the
same as a RFID multiplexer.

There are in fact two different implementations of our hub, as
you can see in figures 1 and 2:

Figure 1: Xilinx dependant RFID Hub (2)

First implementation was developed using Xilinx EDK
software and consequently, Xilinx dependant cores. As you
can see in figure above, we used our own Ethernet Core (3)
and the rest of them (Xilinx Microblaze, SRAM/FLASH,
RS232) were generated using Xilinx EDK software IDE.
The second implementation (see figure 2) of our RFID Hub
was vendor independent so this could be synthesized using
ASIC devices. There are a lot of discussions what version is
best when we take in consideration different aspects like costs,
communication speed, and so on. We will not made this
discussion here, we will try only to present our solutions

regarding the encryption algorithms for every implementation
of our RFID enabled device.

Figure 2: ASIC ready RFID Hub (2)

For a better understanding of the system, our device should
use up to 8 RFID readers in the same time, but much more
faster than commercial RFID multiplexers which scan the field
in a preset order and this in fact means that a single RFID
reader is working at a time.

1.1. Security needs

If we take a closer look at the pictures above, the device is
communicating data two ways:
• first communication channel is the Ethernet through some

data is send/received to/from a central PC server;
• the second communication channel is not so obvious

when first look at the figures, but is in fact real data that
is read or write from/to RFID labels.

We can consider that first communication channel is somehow
safe because this is in fact a local network with no connection
to Internet or some other networks. Just imagine this could be
a security system for a big building, with no connections to
external world.
The second communication channel is the data that is write or
read to/from RFID labels. We cannot change the ISO 15693
standard to made somehow a safe communication with these
devices, but we can encrypt actual data from them. If we do
not provide an encryption mechanism, anybody can read this
RFID labels and can duplicate them. The worst-case scenario
is the implementation of such a system in a supermarket
without any encryption algorithm provided.

2. The solutions

2.1. Why software/hardware implementations?

We had to choose an algorithm that could be implemented
both in software and hardware. You may ask why do we need
a hardware implementation if we are using some processors
inside our SoC? There are a number of answers to such a
question:
• our second solution which is ASIC ready should use as

little memory space as possible, so a software
implementation could be costly from memory point of
view;

• again, this second solution uses a processor that does not
provide a C/C++ compiler (4), but only an assembler, and
a encryption algorithm implementation using just
assembly language can be tricky;

• if we are taking in consideration the first version which
uses a Microblaze processor, a software encryption
algorithm developed in C/C++ should meet all
performance requirements. Also we can use BRAM
memory specific to Xilinx FPGA's for a software
implementation.

Taking this in consideration we needed both software and a
hardware implementation of an encryption algorithm.

2.2. Choosing an algorithm

Our final choice of an encryption algorithm should meet some
conditions:
• easy to implement in software and hardware;
• to be a block cipher;
• the software implementation should not use too much

memory;
• the hardware implementation should use just a small

number of logical gates;
• both software and hardware implementation should be

fast enough for a normal RS232 communication;
• to algorithm should be safe enough and use keys with

minimum length of 8 bytes (length of RFID unique
label).

We identified two candidates: DES algorithm and AES
(Rijndael) algorithm. We choose the DES algorithm because
after some preliminary tests we found that both the compiled
source and the synthesized cores were much more suitable to
our needs.

2.3. RFID Label structure

In order to follow our own defined security needs (5), data
written on transponders will have the structure described
below (see Table 1):
• 4 bytes used for authentication (use of transponder

unique ID and data that follows) (0xAB, 0x49, 0xF1,
0x52) computed with a SHA1 type algorithm;

• 2 bytes used to store the length of real data (0x00, 0x10);
• real data (DES encrypted) (0x35, 0x9A, … , 0x01, 0x0D)
Real data from transponder is usually DES encrypted. There
are some exceptions where we don’t use DES, but another
very simple encryption algorithm. For example on powerful
embedded devices like Microblaze Soft Processor we used
DES encryption but for 8051 compatible devices (which are

not using FPGA's) we used other very simple encryption
algorithm.(5)

0xAB 0x49 0xF1 0x52

0x00 0x10 0x35 0x9A

0x22 0x01 0x95 0x42

0x00 0x66 0x17 0x03

0xB6 0x1A 0x9F 0x90

0x01 0x1D

Table 1: Real data on transponder

3. DES Implementations

Once we choose our encryption algorithm, we had to
implement both the software and hardware versions for our
different versions of RFID Hubs.

3.1. DES Software implementation

We implemented the standard DES ECB (Electronic Code
Book) using ANSI C standard. The compiler used is GNU
mb-gcc (microblaze gcc, used inside Xilinx EDK IDE, see
Figure 3). To test the speed of the software algorithm we
implemented two versions of DES:
• a simple and short one, with no improvements in speed

at all, we just wanted this version to be ass small as
possible;

• a version improved for speed, but without any
requirement regarding the memory used.

Figure 3: Xilinx EDK Screenshot

Finally, after testing both versions we decide that the first one
is the best for our application, because both of them worked
just fine with RFID readers attached to the system, so the
speed was not a real issue, but when compiled, first one is
using just 6K of memory against 54K for the second one.
And 6K of memory means in fact that we can use a cheap
Xilinx Spartan II/III 200K Device (11K of BRAM memory)
instead of a much more expensive Virtex 2/3.

3.2. DES Hardware implementation

Our DES Hardware implementation is derived from
SystemC/Verilog DES Core, by Javier Castillo Villar (see
www.opencores.org). Like the software version, it is also an
ECB implementation which and it is area optimized. The
synthesis was done using the Xilinx ISE IDE (see Figure 4)
and Xilinx Place&Route software.

Figure 4: Xilinx ISE Screenshot

If we are using a Spartan III device, our hardware DES
implementation has next characteristics:
• maximum frequency: 77.207 Mhz (maximum frequency

for Spartan III is 200MHz);
• number of occupied Slices: 357 out of 1,920 18%;
• cycles per block: 16.
If this version of DES core is used, the RFID hub with 8-bit
processor needs at least a device with 150K gates. The best
FPGA that can be used for testing before going ASIC are
Xilinx Spartan II and III. We used both types of devices with
almost the same performances. Spartan III device was just a
fraction faster, but we used also different clock sources
(48MHz vs. 50MHz).

4. Conclusions

We wanted that our "RFID Hub" to have some encryption
mechanism for data from transponders. We used two
mechanisms:
• one for authorizing labels (first 4 bytes);
• one for encrypting actual data from labels (using DES).
Because we developed two versions of this device, we needed
two different implementation of DES:

• a software one, implemented in ANSI C, for Xilinx
dependant version;

• a hardware one, for "ASIC ready" version.
Both versions worked correctly and there is no difference
from outside world between the devices. The main differences
are in the way they are internally organized and how each of
them is using DES algorithm.
From the point view of costs, the first version is preferable
because does not require any external memory and could be
used no mater the FPGA/ASIC vendor. If we take in
consideration future developments and improvements, the
version that is using Xilinx dependant cores is one to be
preferred.

5. References

[1] Marius Cerlinca, Adrian Graur, Valentin Popa, "FPGA
Implementation of an RFID Hub", 13th
INTERNATIONAL SYMPOSIUM on POWER
ELECTRONICS, Novi Sad, 2005, printed in Electronics,
Banjaluka, 2005, ISSN 1450-5843, pp.57-59

[2] Marius Cerlinca, Adrian Graur, Valentin Popa, " FPGA
Implementation of an RFID Dedicated SoC", ECUMICT,
Gent, 2006, ISBN 9-08082-552-2, pp.201-204

[3] Marius Cerlinca, Adrian Graur, "FPGA Implementation
of a 10Base-T Ethernet Interface", Distributed Systems,
Suceava, 2004, ISBN 973-666-143-1, pp.80-85

[4] Marius Cerlinca, Adrian Graur, "BUILDING A SOC
ARCHITECTURE IN AN FPGA", AECE, Suceava,
2004, ISSN 1582-7445 - No 2 / 2004, pp.77-81

[5] Marius Cerlinca, Adrian Graur, Tudor Cerlinca, "A Script
Language for RFID Systems", ECUMICT, Gent, 2006,
ISBN 9-08082-552-2, pp.345-352

