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Abstract 

Many methods in the numeric calculus resolving nonlinear 
algebraic or differential equation but ignore some behavior of 
these problems. Same aspects can conjure to the fractal 
iterative techniques. In this paper work is performed a critical 
analysis about iterative fractal techniques which can conduct 
to various implemented applications. Study of the nonlinear 
equation, treated into iterative techniques, makes the subject of 
this paper. It consists in a short revue of the most important 
principles of the fractal calculus and complexity applications 
in fundamental sciences and technologies. If trying to solve 
the equation z4-1=0 in the complex plan, we can obtain the 
Newton's fractal. And this is not the single case when a 
numeric method for solving nonlinear algebraic equations has 
same strange behavior. If we modify the fractal logistic 
equation with the goal to perform an appropriate model for 
some physical applications, we can obtain some interesting 
and amazing results. 
 

1. Introduction 

 
Many methods in the numeric calculus resolving nonlinear 
algebraic or differential equation but ignore some behavior of 
these problems. Since fractal analysis developing were 
identified a lot of strange features in the solution of same 
equations.  
A very interesting phenomenon occurs in the solution of the 
following set of nonlinear differential equations called the 
Lorenz system [5]: 
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This system arises from problems related to fluid convection 
and to weather forecasting. When the r parameter lies in the 
24.7<r<145 interval, the solution does not converge to a fixed 
point in the t→∞ limit, nor is there a limit cycle, but the 
solution keeps moving around in a finite area. The limit set of 
the orbit at t→∞ is generally called the attractor.  
 
 

 
 
 
It has been confirmed numerically that the Lorenz attractor 
system has infinitely many folding.  
Other strange attractors have been found in many systems with 
few degrees of freedom. The following system, called the 
Rössler system [5], is famous for showing that chaos can be 
produces with only one nonlinear term: 
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Attractors of ordinary differential equations with the degree of 
freedom less than 2 are limited to either a fixed point or a limit 
cycle, and have proved not to be strange. However, even in 
system with only two variables, chaos can be found if the 
system evolves discretely. A good example in this sense is the 
strange attractor of the Hennon map. The equations system in 
this case is: 
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Strange attractors in systems of ordinary differential equations 
also usually have fractal properties. By imagining a plane in 
the phase space and observing only the points where the orbits 
pass through the plane, the dynamical systems can be reduced 
to a discrete map called the Poincaré map. The Poincaré map 
of the Rössler system, like the Hennon map, is self-similar and 
the Rössler attractor is also fractal. 
 

2. Strange attractors 

 
Let us consider a simple nonlinear map called logistic map or 
bifurcation map: 
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This is an example of iterative method application on  
 



nonlinear function. In the first regard it is a classical and very 
knowledge path to resolving without problems same numeric 
analysis applications. However, we can observe that the 
asymptotic behavior of xn depends strongly on r parameter: 
for 0≤ r <1, xn decrease as n and xn approach 0; for 1≤ r ≤ 2, xn 
monotonically approaches 1-1/r; for 2< r ≤ 3, xn approaches 1-
1/r with oscillations; for 3< r ≤ 3.449, xn is gradually 
approaches period motion of period 2; for 3.449< r ≤ 4, the 
system become uncontrolled. 

 
 
 
The set of attractors of xn is shown in figure 1. 
Historically, the logistic map was obtained from the logistic 
equation, which describes the growth of a population in a 
closed area: 
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If we put this equation into a difference equation forms: 
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we obtain the logistic map if we change the variables as: 
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The solution of (5) can be obtained analytically for any initial 
condition u(0)>0. It monotonically 
approaches a fixed point ε/h. By 
contrast, the difference equation for 
large interval ∆t and the logistic map 
behave quite differently, producing 
chaos. This kind of discrepancy 
between the solution of a differential 
equation and that of its difference 
equation appears in any nonlinear 
system if the difference interval is 
sufficiently large [1]. Hence we have 
to be careful when we numerically 
solve a differential equation by using a 
difference equation. 

If we modify the logistic equation in the form:  
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we can observe an interesting result about the map equation 
(figure 2). This result makes subject of some original studies 
focused on the numeric methods in complexity calculus. 
If trying to solve the equation z4-1=0 in the complex plan, we 
can obtain the Newton's fractal [4] which shown like in figure 

3. And this is not the single case when a 
numeric method for solving nonlinear algebraic 
equations has same strange behavior.   
 

3. Fractals by maps 

 
For a given map [2]: 
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the set of initial points {xo} whose iterated 
points never diverge (|xn|<∞ for any n) is called 
Julia set. For many maps, the Julia sets are 
known to be fractals. A good example is the 

following complex logistic map: 
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In the same way, equation: 
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conducts to other fractal. To set of complex parameters b such 
that successive iterates of z=0 under g(z) do not tend to ∞ is 
named the Mandelbrot set. This set has a fractal border. 
When we solve an algebraic equation numerically by Newton's 
method, we have to iterate a map similar to (11).  
If the equation has several solutions, an initial value for the 
iteration will be attracted to one of the solution. The boundary 
of the set of points that finally converge to one of the solution 
becomes a fractal. Two initial points that are arbitrarily close 
can approach distinct solutions, if they start close to this 
boundary. 
Another simple method to construct fractals is provided by 
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Figure. 1 Bifurcation diagram of logistic map for 3≤r≤4 

X 
r 2.3 4 0.01 

0 

1 

Figure. 2 Bifurcation diagram of modified logistic map for 0.01≤r≤4 



contraction maps. It is trivial that the invariant set of a single 
contraction map is a point. However, for two or more 
contraction maps the invariant set is the set X which satisfies: 
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this is a fractal. For example, in the case n=2, the following 
maps produce the Cantor set in the [0,1] interval. 
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In the complex plane we have the Koch curve if the mappings 
are: 
 

 

j

zzf

zzf

6

3

2

1

)1()(

)(

2

1

+=

+−=

=

α

αα

α

  (14) 

 

where z  denotes the complex conjugate of  z. 
Thus all regular (non-random) fractals can be expressed in this 
formalism, which because its simplicity is expected to become 
more important in future. 
 

4. Random clusters 

 
Consider a 2 or 3 dimensional lattice and distribute points 
randomly on it with p probability. If neighboring sites are 
occupied by points, they are regarded as connected. By 
changing the probability p of the occupation of sites we can 
estimate the critical probability pc and fractal dimension of 
clusters. 
The fractal dimension of clusters is calculated in the following 
way. We define the mean radius of clusters of size s as:  
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where r i denotes the distance between the centre of mass and 
the i-th point, and <•> indicates the average over all s-clusters. 
When Rs is proportional to a power of s, the clusters are 
statistical fractals with dimension D which satisfies the 
relation: 
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The result of simulations show that (16) holds at p=pc and the 
fractal dimensions are estimated as 1.9 (2 dimensional lattice) 
and 2.5 (3 dimensional lattice) [3]. This value in the 2 
dimensional cases agrees with the experimental value. 
Important results in this sense was been obtained in the 
nanotechnologies area. Here, the nanosystems are reduced to 
the molecular or atomic chains aggregated into the cluster 
structure.  

5. Clusters in spin systems 

 
The best-know model of magnetic material is the Ising model 
[4]. In this model, spins which can take only the value +1 or -1 
are arranged on a lattice. The total energy (or Hamiltonian) E 
of the system is given by the equation: 
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Here, ΣΣ denotes summation over nearest neighbor sites. J is 
the coupling constant and H is the external field. In thermal 
equilibrium, the probability of occurrence of the state with 
total energy E is given by: 
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where kB is Boltzmann's constant and T denotes temperature. 
In both 2 and 3 dimensional space, the Ising model is known 
to show a phase transition at a critical temperature, Tc. For 
T<Tc , symmetry is spontaneously broken and most spins take 
the same value, which indicates that the system is 
ferromagnetic. On the other hand when T>Tc , each spin takes 
the value +1 or -1 nearly independent of neighboring spins and 
the average of spin vanishes, which shows that the system is 
demagnetized. At the critical point T=Tc , the characteristic 
size of clusters of the same spin diverges and distribution of 
the clusters becomes fractal. The fractal dimensions of the 
clusters are estimated to be 1.88 in 2 dimensional space and 
2.43 in 3 dimensions. 
 

6. Discussion 

 
A discussion about pattern separating in different classes is 
possible thanks to the attractors involved in the fractal models. 
A Newton’s fractal presenting very clear the separating areas 
which correspond to the various attracting centers. If these 
areas was been specifically colored, the maps obtained in this 
way can point to the trace of some search separating 
algorithms. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If trying to solve the equation z4-1=0 in the complex plan, we 
can obtain the Newton's fractal [8,9,10] which shown like in 
figure 3. And this is not the single case when a numeric 

Figure 3. The Newton-Raphson fractal for 
z4-1=0 equation 



method for solving nonlinear algebraic equations has same 
strange behaviour.   
The Newton’s fractals are defined on complex spaces, but can 
be created anytime a homeomorphism which apply the specific 
fractal techniques to the practical aspects of the applications.  
The fractal maps, like as the Hennon map or the logistic map, 
involving the chaos behavior under the deterministic surface 
of modeling by the practical problem. Today we not were 
capable to decoding the information stored under this 
presenting mode and we have tendencies to eliminating this 
information from the context. However, in the future we will 
be forcing to readapting this concept so as decoding and 
analyzing this information for tunneling news borders of the 
scientific knowledge. Thus, the mathematics must be adapted 
so that in the models describing to making possible the 
implementation of the new fractal, complexity and chaos 
techniques. In this sense, the research into the complex 
systems area must involving these mathematics modeling ways 
and news physical studies of the real phenomenon must be 
performed just in conjunction with the new age methods and 
theory of describing, like as the spintronics (the spin 
electronics) or the nanotechnologies. 
 

7. Conclusions 

 
In the complexity theory is notable involving of the iterative 
functions in behavior of fractal pattern. Study of the nonlinear 
equation, treated into iterative techniques, makes the subject of 
this paper. It consists in a short revue of the most important 
principles of the fractal calculus and complexity applications 
in fundamental sciences and technologies. Were been 
presented also some new ideas of analysis to iterative relations 
like as named the modified logistic equation. On this relation 
can be performing some studies with valuable results in 
numeric analysis area. In bifurcation diagram of logistic map 
(figure 1) are presented results of the own program run, that is 
written under C++  programming language. 
For the treating Newton fractals we implemented some 
VisualBASIC and C++Builder environments and some 
mathematics dedicated simulating developments, like as 
Matlab and Maple softwares. 
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