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Abstract

Sonar uses echolocation to measure range to objects at
low cost and computational effort. From range readings
to landmark classification is large step, although bats and
dolphins are successful at it. These biosonars move while
scanning and we employ this strategy to classify objects.
Our sonar generates a random pulse sequence related to
echo waveform amplitude, which we term pseudo-action
potentials (PAPs) because of their similarities to biolog-
ical spikes. We employ neuromorphic elements, such
as delays, threshold, coincidence detection, short-term
memory, and massive parallelism to classify objects from
their echoes. When the sonar moves along a linear tra-
jectory, a small object produces hyperbolic range read-
ings parameterized by the passing range. Estimates of the
passing range form a temporal coincidence of the PAP ar-
rival times. This talk demonstrates that features of range
and passing-range data are useful for object classification.

1. Introduction

Sonar is a useful sensing modality for robotics, but the
data produced by conventional time-of-flight (TOF) rang-
ing sensors is difficult to interpret. Information for object
recognition can be obtained by capturing the entire echo
waveform [1, 2], rather that just the TOF, but analog-
to-digital conversion can be expensive. As a less expen-
sive approximation, our sonar converts a echo waveform
into a random point process by repeatedly resetting a con-
ventional detector [3]. These random points are called
pseudo-action potentials (PAPs) because of their similar-
ity to biological action potentials. The PAP temporal den-
sity relates to echo amplitude and allows strong echoes to
be identified for processing. This paper describes how
to process PAPs observed by a moving sonar to classify
objects that can be used as landmarks for mobile robot
navigation.

2. Sonar configuration

Figure 1 shows a ranging sensor moving along a linear
trajectory in steps equal to ∆y. The sequence of range
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Figure 1: Sonar moving in the θ = 0 direction with step
size ∆y past an object (circles show location sequence
referenced to sonar position). Sonar axis is denoted θ s

with beam extending from θf to θn.
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Figure 2: Hyperbolic range readings for different values
of passing range xp. PAPs from a 10 mm diameter post
reflector with xp ≈ 80 cm are shown as dots.



measurements to a small object follows a hyperbola:

rk =
√

x2
p + (yn + k∆y)2 (1)

for k = 0, 1, · · · , N − 1 where

• xp is the passing range

• yn is the sonar location producing ro

• N ≈ yf−yn

∆y + 1 is the number of readings ob-
served.

The range measurements are in reverse order of the ob-
servations because they will be stored in short-term mem-
ory and processed shortly after the last one, r0, is ob-
served. The classification should be accomplished before
the object location becomes yn, or just before the object
leaves the beam. Fig. 1 shows

yn ≈ xp

tan(θn)
(2)

and

r sin(θf ) ≤ xp ≤ r sin(θn) (3)

Figure 2 shows sets of range readings produced by
a small object for different xp values. Locating the ob-
ject means determining xp and yn soon after ro is ob-
served. The conventional method is to use the values
shown as templates, to cross-correlate these templates
with the measurements and to find the template produc-
ing the maximum value. This is the optimal localiza-
tion procedure for measurements in the presence of noise.
However, the standard signal-in-additive-noise model is
not appropriate for sonar range measurements since the
sonar measurements are robust. Artifacts, such as rever-
berations, phase cancelation, TOF jitter, and side lobes
are more troublesome, but will be accommodated by our
neuromorphic processing.

This paper also considers PAPs reflected from a rough
planar surface. When the sonar moves parallel to the
surface the range readings have a mean value r ≈
xp/ sin(θn) and a variance related to the surface rough-
ness.

An interesting parameter for a mobile sonar is the
passing range xp since it determines if a collision is likely
to occur. Eq. (1) provides N estimates of xp

x̂p(k) =
√

r2
k − (yn + k∆y)2 (4)

We cannot solve for x̂p directly because we do not know
yn. We previously found x̂p and ŷn by using the tem-
plates for a candidate pair and then performing a two-
dimensional search in the (xp, yn) space to find the best
least-squares fit [3].
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Figure 3: Post echo data in short-term memory. Most
recent echo corresponds to k = 0. a) Range histogram
of PAPs with yn = 46 cm. b) Histogram of x̂p(k) with
yn = 46 cm.

3. Neuromorphic processing

This paper considers a neuromorphic coincidence detec-
tion approach as an alternative to our previous off-line
method. We illustrate this new method by applying it to
range data observed by moving past a 10 cm diameter
cylindrical post with ∆y = 3 cm. We first extract the
strong echoes from the PAP data by finding when three
successive PAPs fall within a specified range interval (5
cm). We form a histogram of the strong echoes as a func-
tion of range, with results shown in Fig. 3a, correspond-
ing to our set of range measurements. This step helps
identify reverberation artifacts. We then apply Eq.(4) to
estimate xp from the set of rk range measurements by
assuming values for yn, one for each detector. The de-
tector with approximately the correct yn value will cause
the estimates to cluster around the true xp value just as
the last measurement ro occurs. The results for the de-
tector with yn = 46 cm is shown in Fig. 3b. We iden-
tify this coincidence condition by summing the columns
in the short-term memory and observing when its peak
value is a maximum. A missing strong echo resets the



Figure 4: Image of doorway with adjacent window and
cinder block objects.

sum because the sonar range readings are robust. A suit-
ably large threshold for the sum eliminates the echoes
from the side lobes. The object is perceived when the
peak sum passes through its maximum value. Only the
detector with the approximate value of yn exhibits such a
peak in the sum.

4. Results with more complex objects

To acquire more typical data our sonar moved down a
hallway composed of doorways in a cinder block wall, as
shown in Fig. 4. The door and window jambs form a pair
of strong retro-reflectors having the same xp value, while
the rough cinder block is a typical random surface. We
applied the x̂p estimation procedure to the hallway data
with yn = 46 cm.

Figure 5a shows the results when the peak of the col-
umn sum passes through a maximum. The expected co-
incidence in x̂p occurs at xp = 85 cm (close to the true
value [3]) in the door jamb data and a smaller, but not-
coincident, peak at a larger xp value due to the window
jamb data. The yn value for the door jamb detector is
also appropriate for the window jamb, because the two
have the same xp, but the ro for the window jamb occurs
a a later time, hence they would be coincident at a larger
y value. At the time shown that makes the door jamb
echoes coincident, the window jamb echoes are shifted
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Figure 5: Doorway echo data. a) Short-term memory
with estimates of xp. b) Sum of memory columns when
first peak is a maximum.

to larger xp values. This interesting feature allows close-
by objects at the same passing range to be separated in
xp space. The maximum of peak is shown to occur in
Fig. 5b. The double peak pattern, corresponding to the
door and window jambs, is a useful landmark, which has

been localized at xp = 80 cm and yn =
√

r2
o + x2

p.

Figure 5 also shows additional data for xp > 200 cm.
These are caused by multiple reflection artifacts due to
echoes bouncing off the detector and acting as secondary
probing pulses. These artifacts are eliminated by limiting
the echo analysis to twice the range of the first echoes, in
this case approximately 160 cm.

Figure 6 shows the echoes from the cinder block sur-
face for comparison. Since the echoes are not from a
small object we would not expect the xp estimates to be
coincident and they are not. So we show only the more
interesting PAP range histograms, which although they
have a random variation also are coincident, with mean
range r = 100. In our experiments θn = 60o. The
xp = 85 cm results from the window and door jambs
are in good agreement with the observed r value.
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Figure 6: Cinder block echo data. a) Short-term memory
containing histograms of rk values. b) Sum of memory
columns when first peak is a maximum.

5. Discussion

The results indicate that coincidence in short-term mem-
ory of both the range rk and x̂p values lead to classifi-
cation of interesting object types. When a coincidence is
observed in x̂p the echo-producing object is small (com-
pact) or a retro-reflector, both of which produce hyper-
bolic range readings when the sonar moves along a lin-
ear trajectory. Coincidence in rk indicates the object is a
rough plane.

The size of the short-term memory is controlled by
the beam width at passing range xp that determines the
number of data N . Larger memory sizes can include in-
terferring echoes from other objects. Another limit on
memory size is the expected length over which the piece-
wise linear trajectory is valid. A sonar that moves more
erratically would produce coincidence over a smaller
number of successive echoes.

Maximizing the peak of the sum of the short-term
memory columns was the method used as a stopping rule
for object perception, and it seems to work well. We also
plan to investigate the product the column terms. Since

the terms are generates as histograms, this product would
be similar to a maximum-likelihood estimate.

We assume that the sonar orientation θs is constant,
which is a form of minimum energy constraint. If more
data from a reflector is needed, θs can increase and more
echoes can be observed as the sonar passes the object, but
at additional energy expense. We assume that biosonars
can classify landmarks from N readings.

6. Conclusions

This paper has presented a non-linear processing method
using data selection (strong echoes), histograms and
thresholds to classify objects with a moving sonar. Our
sonar generates a random PAP sequence related to echo
waveform amplitude. Neuromorphic elements, such
as delays, threshold, coincidence detection, short-term
memory, and massive parallelism can classify certain ob-
jects from their echoes. When the sonar moves along
a linear trajectory, a small object produces hyperbolic
range readings parameterized by the passing range. Es-
timates of the passing range form a coincidence of val-
ues that can be detected from the sum of the columns in
short-term memory. This talk demonstrates that features
of range and passing-range data are useful for object clas-
sification.
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