
The Algorithm of Running Sample Sorting by List Merging for RS-Image
L-Filtering

Oleg V. Tsymbal a, Vladimir V. Lukin b, Jaakko T. Astola c, Karen O. Egiazarian c
a Kalmykov Center for Radiophysical Sensing of Earth NAS and NSA of Ukraine

12 Ak. Proskury Street, 61070, Kharkov, Ukraine,
Tel/fax + 38 0577 441012, E-mail: o_tsymbal@mail.ru

b Dept 504, National Aerospace University (Kharkov Aviation Institute)

17 Chkalova Street, 61070, Kharkov, Ukraine,
Tel/fax + 38 0577 441186, E-mail: lukin@xai.kharkov.ua

c Signal Processing Laboratory, Tampere University of Technology
P.O.Box-553, FIN-33101, Tampere, Finland, Tel. +358 3 365 3860,

 Fax +358 3 365 3857, E-mails: karen@cs.tut.fi, jta@cs.tut.fi

Abstract
One-thread microprocessor system oriented algorithms of

sample sorting for remote sensing (RS) image processing us-
ing L-filters are considered. The efficient algorithms of run-
ning sample sorting by list merging and hybrid list-histogram
sorting are proposed. The efficiency is evaluated and com-
pared to known standard and modified algorithms of sample
sorting for filtering tasks in different noise situations that are
typical for RS-data. It is shown that for the most frequently
used apertures of sliding window the use of the proposed sort-
ing algorithms is expedient.

1. Introduction
Most of computations that are required for forming the

output value of order statistic filters (OSFs) or order statistic
(OS) based local activity indicators deal with a sample sorting
procedure. In general, many sorting algorithms are known [1].
Such algorithms as Hoare’s “fast” sorting are commonly con-
sidered as the most efficient simple data sorting algorithms.

Nevertheless, OSFs applied to RS image processing have
some peculiarities. First, sample size is rather small; in gen-
eral, OSF sliding window apertures larger than 9x9 are used
very seldom. Second, RS-image pixels in any of widely used
raster formats of RS-data representation are commonly de-
scribed by integer numbers. Moreover, one of the most widely
used formats is the byte format of RS-data representation for
which the image pixels have integer values within the range
0..255.

This representation format stipulates the efficiency of
radix and, in particular, histogram sorting methods [2,3]. It
also makes possible to easily obtain output values of rather
simple OSFs (e.g., the weighted OS (WOS) filters like stan-
dard median, Lpq [4], etc.) using positive Boolean functions.
Such rather wide filter class got the name of “stack filters” and
it is the most suitable for parallel VLSI implementation [5].

The task considered in our case is constrained by condi-
tion of only one-thread (one-processor) execution of RS-image
filtering. This is very a important condition since paral-
lel/pipelined systolic filter (e.g., VLSI) implementation can be

much rarely met in practice compared to one processor PC or
one signal microprocessor realization.

There are also some another peculiarities of particular
OSFs. There peculiarities are the amount of order statistics
used for forming the OSF output, the location of these order
statistics in the ordered sample, etc. This allows using more
fast sorting algorithms referred to as partially sample sorting
or OS extraction ones. In particular, the median search algo-
rithms are known to have the asymptotic complexity estima-
tion of O(Nlog2log2N) and O(N2/3log2N) (where N is the sam-
ple size) [1], i.e. they have better performance compared to
“fast” sorting that has the complexity O(Nlog2N). There is also
the К-th OS searching algorithm having O(N) performance es-
timation. There exist also OS extraction algorithms that ex-
ploit binary trees, Rao-Rao arrays etc. [5] for solving a wide
spectrum of sorting-like tasks.

Nevertheless, there is a much larger set of tasks that re-
quire full (or near full) sample sorting. These are the standard
L-filters, α-trimmed filters, complex WOS-filters (e.g. soft
morphological filters) as well as the specialized filters (e.g.,
the impulse burst removing filter [6]). Note, that two latter fil-
ters require structural (spatial) information preservation.

In addition to already mentioned OSF algorithm peculiari-
ties, there are also some principal peculiarities of sliding win-
dow filtering of RS-images. First of all, images are corrupted
by rather intensive multiplicative, additive or mixed noise;
impulse noise of salt’n’pepper type can be also present [6].
This leads to the situation when a data sample to be processed
can contain the values within entire range of image representa-
tion (both extreme minimal and maximal values can be met
simultaneously). This fact, as it will be shown later, reduces
the efficiency of histogram type sorting algorithms.

The second important peculiarity is just the sliding win-
dow filtering approach: at each next step the OSF sliding win-
dow shifts usually one pixel aside. This means that the new
obtained data sample contains up to 90% values already sorted
at the previous step for the “old” sample. The use of this in-
formation lets speeding up the sorting algorithm. This ap-
proach has been put into basis of the so-called running sorting
algorithms [2,3,5].

2. Known sorting algorithms and the
proposed modifications

The standard histogram sorting algorithm [2,3] presumes
forming the ordered sample as the result of full histogram
look-through. Histogram is to be formed at the previous step
as the result of one pass through the sample. The histogram
look-through is stopped after full sorted array has been
formed. The worst case would be the full histogram look-
through (from the value 0 to 255). This algorithm is com-
monly considered as the basic non-running histogram sorting.

The amount of computations required for new histogram
forming can be reduced from N to 2h (where h is sliding win-
dow vertical size) based on aforementioned peculiarity of slid-
ing window filtering (one pixel window shifting). This can be
done due to substituting the procedure of full histogram re-
forming by less computation consuming operations of deleting
the values related to the excluding “old” column of sliding
window and inserting the newly coming column values. Let us
further call this variant of histogram sorting algorithm as
“running histogram sorting”.

For rather small sliding window apertures that determine
the sample size the histogram of a sample as a rule does not
reach both boundaries of pixel representation. Based on this
assumption, one can expect the histogram sorting speeding up
in the case of histogram one edge tracking. This is due to
elimination of looking up the void histogram positions located
in near boundary areas. Let us further refer such sorting algo-
rithm as “edge tracking running histogram sorting”.

Very often (especially for VLSI realization) the “radix”
algorithms that presume the values to be sorted as numbers
represented in positional numerical system appear to be effi-
cient [1,3]. In our case, an 8-bit value can be represented as
two 4-bit numbers, or four 2-bit numbers, or eight binary
numbers. For sorting of such number sets, the corresponding
histogram trees are used [1,3]. Principally this approach al-
lows eliminating void histogram positions checking. In case
of VLSI realization, in addition to possibility of parallel reali-
zation, this approach allows reducing its realization complex-
ity due to simplifying of comparison blocks to binary logic
cells in case of using binary histogram tree [5].

As in case of sorting methods discussed above, it is expe-
dient to apply the modification for running case to the radix
sorting algorithms. Also, the procedure of tracking the edges
of “low” level histograms seems to be efficient for the case of
4-bit key radix histogram sorting.

3. The proposed list merge sorting
The first novel sorting algorithm proposed below is the

running list-merging algorithm for sample sorting. It is in-
tended for one-thread microprocessor systems or one micro-
processor PCs implementation.

The proposed algorithm presumes saving the information
processed before in specialized structures that allow to store
information in a sorted manner. The structure organized on the
basis of one-link list with additional fields that store informa-
tion about elements locations (column and row in sliding win-
dow) have been decided as the best choice for this purpose. In
practice, this list is realized as a fixed size linear array of “re-
cords” that store the element location information and number
of next list element record (“pointer to next”) in the same array
in addition to element value. In fact, the record fields are the

cells with the same numbers within the corresponding arrays.
In such a case, the standard operation of allocating/releasing
of dynamic memory are not needed. This structure is also con-
venient for merge sorting [1]. Besides, the amount of simple
operations required in such a case does not really depend on
dimension of data elements to be sorted and on service infor-
mation that follows each pixel inside sliding window aperture.

The proposed algorithm of running sample sorting by list
merging presumes storing the information in arranged order in
structures of two types. The first one is the array of “short
(vertical) lists”. They represent (in the sorted order) the ele-
ments of vertical columns that are involved into the sliding
window aperture during filtering an image in the correspond-
ing row. Thus, the height of these columns (and short lists) is
equal to the sliding window height (h) (see Fig.1).

The second structure is the “main list”. It includes all the
pixels within the sliding window. The initial forming of the
short list array for the first row sliding window position takes
place at preliminary stage of filtering. The second structure
(main list) is formed as a result of merging the w short lists
that correspond to columns of the sliding window for its initial
position in each row. With each further filtering window shift-
ing, the one “old” element is deleted form and one “new” is
inserted (see Fig.1) to the short list that has just appeared in
sliding window aperture. At the same time, the elements that
correspond to “old” column (that leaves the sliding window)
are deleted from the main list and the elements that correspond
to “new” column (see Fig.1) are inserted to the main list as the
result of merging of the main list with the corresponding short
list. At each algorithm step after the described procedure, the
main list represents the ordered structure allowing to deliver
the values of any order statistic. This structure is ready to be
used with different L-filters. For more complicated OSF algo-
rithms like [6], the copying of the main list elements into lin-
ear array can be required.

Step by step, the proposed algorithm of running sample
sorting by list merging for conditions when all preliminary op-
erations are completed is the following:
− During one pass through the corresponding short list the fol-

lowing operations take place:
a) the decrement (in the corresponding field of each ele-

ment) of the number of the row in which this element is lo-
cated in the sliding window with respect to its upper border
(see Fig.1); { h decrement operations }

b) the deletion in the list of the “oldest” element, i.e. the
element with the position number with respect to the upper
border of sliding window that became zero after decrement; {
h(max.) | (h/2)(avrg.) branch operations + 1 transfer }

c) the insertion into the list the “new” element with the
value of h (h = w = 5 in Fig.1) in the field of row number with
respect to the upper border of the sliding window; { h(max.) |
(h/2)(avrg.) branch operations + 2 transfers}
− During one pass through the main list the following opera-

tions are executed:
a) the operations that provide the merging of the main list

with the renewed short list (the value in the field of column
number with respect to the left border of the sliding window is
set to w-1 (h = w = 5 for the case in Fig.1) for all inserted ele-
ments); {N comparison operations + 2h transfer operations}

b) processing (or copying to the random access structure)
the values of arranged elements; {N transfer operations}

c) the decrement (in the corresponding field of each not
new element of main list) the value of horizontal location of
element with respect to the left border of the sliding window;
{(N – h) decrement operations}

d) the deletion (in the main list) the “oldest” elements,
i.e. those ones whose value of column number with respect to
the window left border became zero after decrement {N
branch operations + h transfers}.

.
х х х х х х

х V
х V
х C V h
х V

х n
Sliding

window shift direction

The elements
within sliding win-
dow aperture that
form the main list

The elements that are ex-
cluded of main list

“Old” ele-
ment (that is
excluded of
short list)

The element that is included into short list.
Actually the only new element for each sliding
window position.

The short
list that is
merged with
main list

Short (vertical) sorted lists

Central ele-
ment before
window shift

w

Fig.1. The principles of sorted lists forming in case of image processing sequence: left to right and top to bottom.

Sliding window aperture is 5х5 (w=h=5).

4. Hybrid list-histogram sorting
To study the possibility of combining the positive features

of list merging based and histogram sorting algorithms that do
not require spatial-structural information preservation, some
hybrid approaches have been designed and studied by us. The
proposed hybrid algorithm worth mentioning here has got the
name of “running list-histogram sample sorting”.

This algorithm is based on the principles of aforemen-
tioned running list merging sorting with the following modifi-
cations. In short lists, the field of vertical position of an ele-
ment in window aperture is replaced by the field of amount of
equal valued elements. Accordingly, the procedure of decre-
ment and comparing to zero of the field of an element vertical
position for extraction and deletion of the “old” element is re-
placed by the procedure of “old” element search (see Fig.1).
If the amount of elements with the values equal to the one that
must be deleted is not unity, the deletion procedure is a trivial
decrement of amount of elements with this value. The main
list is organized as two-directional list of histogram. In prac-
tice, it is implemented as three linear arrays (0..255): the his-
togram, pointer to (array cell number of) the next and previous
element. This allows direct deletion of “old” elements of main
list without performing the decrement and checking location
field of each list element due to using the “merging for dele-
tion” of the excluded window column. It also permits to get
rid of conventional memory management procedures.

5. Performance analysis
The analytic study of asymptotic complexity of the sorting

algorithms has shown that, in general, all the considered algo-
rithms have the complexity estimation of O(N) except the

“fast” sorting which has O() estimation of N(1+2log2N) for a
case of sample copying into linear array. But only the running
list merging sample sorting has O() estimation that is almost
not sensitive to the actual content of data to be sorted. Its O()
estimation is 4N+4h (for array copying version). In opposite,
the histogram (radix) like algorithms have information de-
pendent estimations that, in general, can be represented as O(N
+ f(M)), where f(M) is some function of pixel representation
dimension (M=255 in our case). f() is determined by real in-
formation content of data to be sorted and actual sorting algo-
rithm used. E.g., the complexities of simple histogram sorting
and running histogram sorting with edge tracking can be esti-
mated as 3N+h+Ehi, 2N+3h+Ehi-Elo, respectively. Here Ehi, Elo
are the mean values of upper and lower histogram edges, re-
spectively. Their actual values depend on image that is filtered
but, most of all, on an image noise situation.

Taking into account the described features of sorting algo-
rithms, the actual efficiency has been estimated for “Barbara”
512x512 image corrupted by three different types of noise
typical for radar RS-images (see Fig.2). The algorithms were
realized using MS VC++ 6.0 without code optimization.

As can be seen, the proposed new list merging and hybrid
list-histogram sample sorting algorithms provide the best effi-
ciency for all noise situations typical for radar RS images and
for most frequently used OSF sliding window sizes. The pro-
posed modifications for the standard histogram sorting is able
to outperform slightly the newly proposed algorithms only for
the case of large sliding windows (i.e., for more than 7x7) for
not very noisy images.

6. Conclusions
The efficient running list merging algorithm of sample

sorting and hybrid list-histogram algorithm are proposed for

L-filter type tasks. The requirement of preserving spatial-
structural information for some tasks is taken into account.

Based on analytical complexity estimation and the real im-
age processing, it is shown that the proposed algorithms pro-
vide the best efficiency for noise situations typical for radar

RS images and for the most frequently used OSF sliding win-
dow sizes. Besides, the list merging algorithm also provides
spatial-structural information preserving and, in general sense,
is not sensitive to the dimension of elementary unit of data to
be sorted.

a)

 b) c)

Fig.2. The diagrams of real time consumption for sample sorting algorithms: 1- “fast” (Hoare's), 2- running
histogram, 3- running histogram with edge tracking, 4- running histogram tree (radix key – 4-bits) with sub-histogram edge

tracking, 5- running list merging (with copying into a linear array), 6- hybrid list-histogram. Time spent is estimated in seconds for
Pentium-166 for processing the image “Barbara” 512x512 corrupted by: a) Rayleigh multiplicative noise (noise variance

σµ
2=0.273), b) Gaussian multiplicative noise with σµ

2=0.012, c) mixture of Gaussian multiplicative noise with σµ
2=0.005 and impul-

sive “salt’n’pepper” noise with probability of impulses Pimp=0.05.

7. References
[1] Knuth D.E. The Art of Computer Programming: Sorting

and Searching, Reading, - MA: Addison-Wesley, 1973,
492 р.

[2] Huang T.S., Yang G.J., Tang G.J. “A Fast Two-
dimensional Median Filtering Algorithm”, IEEE Trans.
On Acoustics, Speech, and Signal Processing, 1979, Vol.
ASPP-27, Р. 13-18.

[3] Yli-Harja O., Astola J., Neuvo Y. “Generalization of the
Radix-Method of the Median to Order Statistic, Weighted
Median and Weighted Order Statistic”, SPIE Symp., Vis-
ual Communication and Im. Proc., III, Cambridge
(Mass.), 1988, Р. 69-75.

[4] Lukin V.V., Melnik V.P., Pogrebniak A.B., Zelensky
A.A., Astola J.T., Saarinen K.P. “Digital adaptive robust
algorithms for radar image filtering”, Journal of Elec-
tronic Imaging, 1996, Vol.5(3),P.410-421.

[5] Agaian S., Astola J., Egiazarian K. Binary polynomial
and nonlinear digital filters, New York (USA): Marcel
Dekker Inc., 1995, 394 p.

[6] O.V. Tsymbal, V.V. Lukin, P.T. Koivisto, V.Р. Melnik,
“Removal of Impulse Bursts in Satellite Images”, Pro-
ceed. of Second IEEE International Workshop on Intelli-
gent Data Acquisition and Advanced Computing Sys-
tems: Technology and Applications, IDAACS’2003,
Ukraine, Lviv, 2003, pp.324-329.

0.5

1
1.5

2
2.5

3

3.5
4

4.5

3x3 5x5 7x7 9x9
0.5

1

1.5

2

2.5

3

3.5

3x3 5x5 7x7 9x9

0.5

1
1.5

2
2.5

3

3.5
4

4.5

3x3 5x5 7x7 9x9

1

2

3

4

5

6

