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Abstract

In this paper we investigate an extraction of speech data from
audio stream. Our method includes unsupervised optimal self-
segmentation of the audio stream into small, homogeneous
segments. The homogeneity is defined on a base of the
average amplitude and a zero-crossing in a frame. A measure
of the homogeneity is entropy. In our approach we calculate a
relative ratio between the average amplitudes of the
neighboring homogeneous segments. For a speech signal this
ratio is less than a threshold defined on a short pure speech
signal. As a discriminative feature we use a percent of the
homogeneous segments within 1 sec interval having high
relative amplitude ratio. In the process of the classification
each 1 sec is labeled incrementally as a speech or a non-
speech segment. The discrimination technique shows high
performance for more than six-hour data that include different
types of audio.

1. Introduction

In the last decade many papers describing speech/music,
speech/singing, speech/environmental sounds discrimination
and audio data segmentation [1], [2], [3], [4] were published.
For the classification were used both statistical characteristics
and structure patterns of the audio data that describe the
structural features for spectral and temporal representation [4].
Below is the list of main features used for speech and other
sound discrimination.

Zero-crossing and variance of zero-crossing.
Spectral centroid and variance of spectral centroid.
Rolloff point.
RMS (root mean square).
Entropy and dynamism.
Micro and macro modulation.
Rhythm.
Harmonic coefficients.
MFCC coefficients.
High zero-crossing rate ratio.
Low short-time energy ratio.
Spectral flux and variance of spectral flux.
Band periodicity.
Speech/silence ratio.

For the classification, different models were also used including
GMM (Gaussian Mixture Model), KNN (K-Nearest Neighbors),
HMM, ANN (Artificial Neural Networks), SVM, PCA
(Principal Component Analysis).

In [3] a simple and effective way for speech/music
discrimination using speech/silence ratio and variation of
zero-crossing rate was described. Speech signals have more
higher silence ratio than music. The most important task is
how to calculate silence ratio and what is a measure of the
silence ratio to separate speech and non-speech.
In [3] the method for the silence ratio calculation was suggested.
At first authors find the amplitude threshold below which a
sample is considered being silent. A silent period is found when
the number of consecutive silent samples is larger than time
threshold. The silence ratio is the number of silent samples
divided by the total number of samples. For such kind of
classification three thresholds were used: the amplitude
threshold, the time threshold and the silence ratio threshold. All
these thresholds are obtained experimentally from training audio
database.
In this paper we suggest another method to calculate the silence
ratio. In the contrast to the mentioned approach, we exploit more
structural patterns than statistical characteristics of audio
features. Our method doesn’t require three thresholds obtained
from the training data. It uses two thresholds motivated by the
specific of human speech.
We suggest doing non-linear self-segmentation of the audio
signal into homogeneous segments with the high and the low
amplitudes that fit the speech audio signal. We use two features
for this segmentation – average amplitude and average zero-
crossing rate in a frame. A measure of the homogeneity is an
entropy and the result of the segmentation is a sequence of small
segments having the high or the low amplitude. The detailed
description of the unsupervised segmentation is presented below.

2. Unsupervised segmentation of audio data

In [5] was described algorithm for quasi-linear reduction of
the speech signal. We apply this idea for optimal segmentation
of the audio signals. Suppose that L = ( 1l , 2l ,…, l i ) is a

current sequence of frames. We define the segmentation as a
sequence of numbers (segment boundaries) s j , j = 1: m,

where sm = i . The number of the segments is the result of

the segmentation. We also define that ( 1st + - st ) > LMIN,

where LMIN is a minimal duration of the segment, and that
( 1st + - st ) < LMAX, where LMAX is a maximal duration of

the segment. The minimal duration of the segment is 50 ms
and the maximal duration is 1 sec. According to the syllabic
rate 3-20 Hz it is natural to consider that in speech signals
each homogeneous segment has the duration, no less than 50
ms. We also define the measure of homogeneity of the
segment. Our measure of homogeneity is based on the



entropy. An average amplitude and a zero-crossing rate in 10
ms frame are used as the features. We suppose that these two
features have Gaussian distribution. For the segment that is
started at the moment i s and is finished at the moment ie we

calculate a mean and a variance of the average amplitude and
the zero-crossing rate in each frame of this segment. A
multivariate Gaussian density with diagonal covariance matrix
is used to calculate the probability of these features in the
frame. The entropy as the measure of homogeneity of the
segment is calculated as:

H(s, e) = - log
e

P Pi ii s
∑
=

, (1)

Pi is the probability value in the frame i. In this approach,

the smaller the entropy is, the more homogeneous the
corresponding segment is. The task of the optimal
segmentation is to find such boundaries of the segments (in
accordance with the duration limitation) so that the criterion of
the optimization will be minimal. So, we are looking for such
segments boundaries that the entropy (homogeneity) will be
minimal. We use the dynamic programming to find optimal
boundaries. Formally, the criterion of optimization is
formulated as:

G(q, 1s , 2s …, sq ) = min

1
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Current optimal value of Gi is calculated as

z* = argmin( Gi z− + ( ),H i z i− ), (3)

LMIN < z < LMAX
Gi = G (i-z*) + H(i-z*,i)

Suppose that z(i) is a current optimal length of the segment.
For z(i) we can write that z(i) = z*.
The optimal boundaries can be defined as

1s j − = s j - z(j), j = 2,…, q. (4)

Used algorithm is the algorithm of self-segmentation. It does
not require a definition of the number of the segments. The
dynamic programming segmentation gives automatically the
number of the segments. The values m and q are defined
automatically during the process of backtracking. The maximal
values of m and q will be in the cases when the size of each
segment is equal to LMIN (50 ms).
Now each homogeneous segment can be described by the
mean and the variance of used features. There are the average
amplitude and the zero-crossing rate, calculated within this
segment. The durations of optimal segments for the speech
data are not equal. The example of optimal segment
boundaries for the speech signal is presented in Figure 1.

Figure 1: The results of unsupervised segmentation of the
speech data.

The experiments with unsupervised segmentation show that in
the most cases we can find the boundaries that correspond to
rapid changes of the amplitude in the speech signal. Below we
describe how the features that correspond to the optimal
segments are used for speech/non-speech classification.

3. Feature extraction

For each optimal segment that includes at least 50 ms, we
calculate the average amplitude, the variance of the amplitude,
the average zero-crossing rate and the variance of zero-
crossing rate. We use these four primary features to get the
new structural features. Within 1 sec we calculate ratios
between corresponding features for each of the two
neighboring segments. When the ratio is larger than 1 instead
of R we use reverse value of R.. We calculate all ratios
successively in each 1 sec interval of audio signal. These
ratios describe the dynamic of the average amplitudes, zero-
crossings and their variances between neighboring segments.
We suppose that these ratios have Gaussian distribution and
for each of these new features we calculate the mean and the
variance.
In Figure 2 the similarity matrix between Gaussian densities

of ratios and corresponding to it audio signal are presented.
The similarity is calculated for each pairs of 1 sec intervals of
the audio signal. For the similarity the Kullback Leibler (KL)
distance between the N-dimensional normal densities is used.
The KL distance is not symmetric and we construct resulting
distance from two KL distance as was described in [6]. This
audio signal mostly includes speech data and also includes
music, music with the speech, artificial sounds, singing and
silence.

Figure 2. An example of the similarity matrix and
corresponding audio signal.



The dark regions correspond to the high similarity and the
bright regions correspond to the low similarity. The presented
similarity matrix demonstrates high separation between
different audio segments, in particular between music, speech,
singing and artificial sounds.
For comparison purpose the similarity matrix using MFCC
coefficient was computed. For the same audio signal for each
1 sec the mean and the variance for 12 MFCC coefficients
were calculated. This similarity matrix was computed in the
similar way as the matrix for the features based on the ratios.
In Figure 3 is presented the comparison between similarity

matrix calculated using suggested features and the similarity
matrix calculated using 12 MFCC coefficients.

(a) (b)

Figure 3. Comparison between similarity matrix computed
using 12 MFCC coefficients (a) and similarity matrix

computed using ratios (b).

Black squares on the diagonal correspond to the high self-
similarity. The larger black squares are the larger are the
regions of the similar data. The segments boundaries of the
signal correspond to the boundaries of the black squares on
the diagonal. The black squares on the periphery of the
diagonal correspond to the similar non-neighboring segments.
The sharp changes in the color of the squares corresponding
to the different kinds of data. It shows the ability of the
features to separate the changes in the content. The matrix of
the similarity based on the ratios has good comparability with
the matrix of the similarity based on MFCC coefficients. We
use only four features and sharpness of the matrix in
particular in the boundaries of the speech and non-speech data
shows that the suggested features fit for speech and non-
speech separation. In Figure 4 are presented the similarity
matrixes for jazz and for parliamentary speech. Jazz includes
short segment of the vocal. The bright regions on the
periphery of diagonal on the picture presented jazz data
show high separation between vocal and jazz. On the same
picture the black squares on the diagonal show good self-
similarity both for vocal and for jazz. In the left part of Figure
4 a short audio fragment of the parliamentary speech is
presented. This fragment includes regions of applause and
silence. The applause and the silence don’t have high
similarity with the speech. They are presented by the bright
regions on the periphery of the main diagonal. On the
periphery of the main diagonal are many black squares. This
shows high similarity between non-neighboring speech
segments. Mostly on the diagonal are black squares with the
clear boundaries. This shows high self-similarity of the
different kind of audio data.

(a) (b)

Figure 4. The examples of the similarity matrixes for different
kinds of signals: (a) jazz and vocal, (b) parliamentary speech.

In the next section we describe how the features based on
ratios are used for speech non-speech classification.

4. Classification

We do classification between speech and non-speech data that
include different kinds of music (instrumental, jazz, and
orchestra), singing with music background, environmental
sounds, sound effects and a silence. At the first step each 1
sec interval is segmented into homogeneous segments, using
described segmentation algorithm. The result of segmentation
is a sequence of small homogeneous segments. Then for each
two neighbouring segments the ratio of the average
amplitudes is calculated. When this ratio is more than 1 it is
replaced by the reverse value. We calculate the number of the
cases when this ratio is less than a threshold. The threshold is
selected using short speech signal. This threshold describes
the rapid changes of the amplitude for neighbouring segments
in speech data. We have found that for wide class of speech
data this threshold is 0.4. Then the number of cases when
ratio is less than the threshold is normalized using the number
of segments in 1 sec interval. When the normalized number is
more than the second threshold we make decision that this 1
sec interval is speech, otherwise it is a non-speech. The
selection of the second threshold is based on the features
specific to the speech. Normally for the speech data this value
is no less than 0.2. This mean that in 1 sec interval the speech
has at least in 20% cases rapid amplitude changes between the
neighbouring segments.
As an alternative technique we examinate multivariate
Gaussian classification. For each class of the data, speech and
non-speech data, we estimate means and covariance in a
supervised training phase. The duration of the training data is
approximately 5 minute for both classes. The estimated
parameters are used to classify the incoming new audio data.
We estimate parameters for two kind of the features. The first
kind of the features is four features, based on the ratios
described in the section 3.
The second kind of the features is 39 MFCC that are state-of-
art features for speech recognition, classification and
segmentation. We exploit these 39 MFCC features for the
baseline test using multivariate Gaussian classification.

5. Experiments

We have conducted series of experiments for speech/non-
speech discrimination. In the Table 1 are presented the
descriptions of the audio data. In the Table 2 are presented the
results of the classification using described rule, using



suggested 4 features and using as a baseline 39 MFCC
features. The accuracy is evaluated with the tolerance 1 sec.

Table 1. Description of the audio data.

Audio data description Duration in sec. Type
of data

Daily radio news, mixed
speech/non-speech,

speech with the music
background

speech-6214
non-speech -572

1

Parliamentary speeches,
mixed speech/non-speech,
speech with the applause

background

speech-7250
non-speech-640

2

Instrumental music from
CD, homogeneous data

2106 3

Orchestra from CD,
homogeneous data

1800 4

Jazz and jazz vocal from
CD, homogeneous data

3792 5

Classical singing with
music from CD,

homogeneous data

1341 6

Table 2. The results of the testing (1 sec tolerance).

Type of audio
data

Accuracy

(rule
based)

Accuracy

(features
based on
ratios)

Accuracy

(39
MFCC

features)

1 82.1% 92.1% 91.6%

2 85.9% 90.5% 80.8%

3 96.3% 97.5% 97.9%

4 97.4% 97.4% 95.6%

5 87.9% 82.6% 97.3%

6 94.3% 93.6% 96.7%

6. Smoothing

For post-processing smoothing we use the results of the
unsupervised segmentation via Bayes Information Criterion
(BIC) [7]. BIC is used for dissimilarity measurement between
two adjacent windows and is based on parametric statistical
models that correspond to their windows. After BIC
segmentation within each segment we apply the voting rule to
find the most dominant label. The most dominant label
becomes as the label of the whole segment. The results of the
smoothing are presented in the Table 3.

Table 3. The results of the smoothing.

Type of
audio
data

Accuracy

(rule based)

Accuracy

(features
based on
ratios)

Accuracy

(39 mfcc
base

features)

2 97.6% 97.6% 97.6%

7. Conclusions

The conducted experiments show that suggested technique is
effective for speech/non-speech classification. New technique
can be used separately and can also be combined with existing
approaches. It is really hard to compare our results with the
published before because the used audio data are different.
The comparison with the results published in [1], [2], [3]
shows that our results are comparable with the published
before, but are achieved by using comparatively more simple
technique. Our results also overperform the results of the
prototyping system [3]. The suggested technique doesn’t
require large training data. It works with the different types of
the speech and the non-speech audio data.
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