
On increasing the syntactical parse efficiency

Borbála Katalin Benkő

Department of Telecommunications
Budapest University of Technology and Economics, Hungary

bbenko@hit.bme.hu

Abstract
The efficiency of a syntactical parser can be measured
according to speed and correctness factors. One reason of the
inefficiencies is the border problem, which is when a
constituent is mistakenly assigned to a neighboring one.

This paper introduces a formal tool that reduces the
border problem, thus increasing the speed of the parse and
decreasing the ratio of wrong results. The basic idea of the
“strong rules” model is that natural languages contain
definitely unambiguously parsable structures (humans always
prefer this parse). With marking the borders of such
structures, the defective expansion of the surrounding
constituents can be limited.

Implementation issues and other application areas of the
“strong rules” model are also discussed.

1. Introduction
Syntactical parsers are mainly used for information extraction,
machine translation and in other high-level text processing
systems [1]. These applications require fast and unambiguous
parse results (e.g. a translator is unusable if there are 300
translations for a single sentence).

Ambiguity reduction is usually achieved via weighting
and filtering the symbols: a weight value is assigned to each
of them; symbols with too small weights are dropped. An
example is the probabilistic approach, where weights
represent probabilities [2],[3]. Although the models include
algorithms for the initial value assignment [4], in practice this
is one of the weakest points.

Using the weighting-filtering point of view we can handle
several language phenomena but not all the problems. The
strong rule model was designed to handle such an unsolved
problem. Although at first sight, “strong rules” seem to be a
variation of the probabilistic approach, detailed description
shows that they are orthogonal.

1.1. The border problem

It can be observed that parsers spend considerable amount of
time building incorrect parse trees; even if part of these wrong
trees is filtered soon after creation. The motivation of the
“strong rules” is to reduce the time spent on building wrong
trees wherever possible.
This paper deals with one specific situation, a phenomenon
that is called the “border problem”. Solving the border
problem means that the wrong parses are excluded, so both the
result’s precision increases and the process becomes faster.

The border problem is when

• There is an ambiguous constituent (e.g. word) in the
sentence: it has correct and wrong parses.

• At the unification phase, the tree containing wrong parse
doesn’t stop at the real border of the structure; it ranges
into a neighboring structure.

The border problem is crucial in some agglutinating
languages with free word order. In these languages, it is easy
to see the relationships inside of a structure but a full parse is
required to determine the borders (e.g. the border between
two NPs).

Correct parse Wrong parse

wrong

Sentence
ambiguous
first word

Figure 1: The border problem

Figure 1 shows an example for the border problem. The
first word of the sentence has ambiguous parse (the wrong
one is marked gray). The correct parse says that the first two
and the last three symbols form constituents. In the alternative
parse, the wrong tree expands into the second structure, also
resulting in a full coverage. The problem is that not only the
inner structure of a constituent is corrupted but also the
border between them is moved.

1.2. Effects of the border problem

The border problem degrades both efficiency factors.

• There are more symbols in the parse table, so the parse
process requires more time (speed factor).

• In several cases, the expanding wrong parse also results
a full coverage. The ratio of wrong trees in the result will
be higher, which degrades the correctness factor.

Although, the border problem is not the only reason of the
efficiency cut, it is a considerable part. Measurements show
that reducing the border problem results significant
performance growth (see Section 5).

1.3. Solution possibilities

There are two main solution possibilities for the border
problem.

The probabilistic approach tries to solve it with assigning
a high value to the correct parse and giving only a low score

to the wrong tree. Using a sufficient cutting level, the wrong
parse is discarded. The main difficulty of this approach is that
the cutting level must be chosen carefully: with a level too
low also the correct parses may be discarded; with a level too
high also the wrong parse is kept, increasing the number of
symbols in the parse table. Since the probability value
assignment uses only inner information, this is a quite
unsolvable task. In several cases, the real probability of the
structure also depends on the neighboring symbols; which is
not considered by the probabilistic approach. Furthermore,
there is no generic possibility to implement mutual exclusion.

Another approach is to detect and mark the borders of the
structures where possible. The definitely detected borders are
marked: they cannot be crossed by the surrounding
ambiguous parses. So, the spread of the adjacent ambiguity is
stopped. In the classical models, there is no possibility for
border marking; the “strong rules” model is based on this
idea.

2. The “strong rules” idea
Adding and managing border marks in a classical parsing
model would be very a complex and time-consuming task.
The strong rule model marks the border of a structure so that it
hides the constituents, only the unified symbol is left in the
parse table. The definitely correctly parsed structures become
indivisible units; so the adjacent unambiguous structures
cannot partially expand into them, causing ambiguity roll-on.
This general definition can be specialized different ways:

• Strong rules (definite rules): the constituents unified by a
strong rule become invisible, that is, no rule can access
them in the future.

• Strong symbols: instead of the rules, the symbols are
marked as strong. A strong symbol hides its inner
subsets of the same type (e.g. a 4-word NP hides its 2-
word inner part that is also an NP)

Both models have been implemented and evaluated. The
parser HumorESK of MorphoLogic Ltd. [5] uses strong
symbols; SRP (Strong Rule Parser, previously Piranha) of
BUTE [6] is built on the strong rule model.

Theoretically, the strong symbol model can also be
derived from the strong rule model so that the recursive rules
that generate the given symbol (e.g. NP) are marked strong.

Strength marks should be used with care. Appropriately
used strong symbols/rules make the parse process faster and
increase the correctness of the results; inappropriately used
strong elements may loose correct parses or even cause the
sentence to be unparsable (e.g. overlapping strong elements).

2.1. Strong symbols

NP

NPWords

The outer NP hides
the inner NP

Figure 2: Strong symbol

Strong symbols are motivated by the quasi-recursive structure
of Hungarian NP-s and VP-s. In Hungarian, if an adjacent
symbol can be unified with an NP, the correct parse is always1
the unified version; even if non-unification also results in full
coverage.

Always-expanding symbols are marked strong, which
means, that the wider symbols hides its narrower constituents,
like the outer NP hides the inner NP in Figure 2.

Implementation issues

Strong symbols can be implemented so that a normal CFG
execution (e.g. a CYK) is periodically interrupted by a
cleanup mechanism. The cleanup checks whether newly
generated strong symbols have inner subsets of the same type
and hides such subsets (removes them from the parse table).
The cleanup process can be very expensive; its execution
should be optimized.

HumorESK uses a layered grammar: the rules are
partitioned into successive layers (e.g. NP layer, VP layer,
compound sentence layer), the parser is restarted at each
layer. The cleanup process runs only at the end of the layers.

2.2. Strong rules

Strong rules are motivated by the border problem. Strong rules
suppose that there are structures in the language that are
always definitely parsable (humans always prefer this parse
even if formally there are other possibilities); and mark them
as undividable units.

For example, in Hungarian, the postpositional NP is such
a structure: the postposition always belongs to the preceding
NP2; even if morphological ambiguity lets other possibilities.

NP

NP
PostP

VP

NP PostP VP

S

VP

NP ADV VP

S

Sentence

Correct parse Wrong parse

morphological
ambiguity

ADV

Figure 3: Strong rule for postpositional NP

Often, the postposition has the same word form as the
adverb part of a phrasal verb (Figure 3); so, there are two
formally correct possibilities for a full coverage, but humans
always prefer the NP-PostP version. If we mark the rule that
unifies the NP and the PostP as strong, it hides the unified
symbols (hiding is marked as light gray lines). So, the wrong
parse gets disabled: it fails since the first word of the sentence
is hidden (by the strong rule) and without this word no full
coverage is resulted. (The figure shows the wrong parse in the
case of a non-hidden first word.)

1 Exceptions are very rare and can be handled with specific rules.
2 The word order might be unclear for the readers not familiar

with the Hungarian language: ‘behind the chair’ is expressed
as [the][chair][behind-of]

Strong rules can be used to describe definite or preferred
grammatical structures (e.g. NP-PostP in Hungarian) or
proverbs and sayings.

Implementation model

The simplest implementation model is to add a visibility field
to the symbols in a normal CFG execution model. Strong rules
set the visibility value to false. This model is the basis of the
detailed one (see Section 4).

3. Application areas of the “strong rules”
There are several application areas for the strong rules.

3.1. Strong rules for the border problem

First of all, strong rules can be used as a solution for the
border problem. Hiding the unified constituents defines the
borders of the structure, so the spread of the surrounding
ambiguity is stopped.

3.2. Strong rules for mutual exclusion of rules

Strong rules can also be used for ranking rules that are
applicable for the same set of symbols.

Suppose that there are two rules: a general one and a
specific one. The goal to achieve is mutual exclusion: if the
specific rule is applicable the general one should not be
applied. (In classical models there is no possibility for that.)
This problem often occurs when working with proverbs: the
proverb-recognizer rule should disable the word-by-word
processing rules.

Making the specific rule strong implicitly gives a
solution. If the specific rule cannot be applied, obviously the
general rules are executed. As the specific rule is applicable,
it hides the unified symbols, so the general rules will have
nothing to be applied on.

3.3. Strong rules for inner structure disambiguation

In several cases, only partial information of the parse tree is
used by the caller (e.g. by an information extraction system).
Often, the order of the rule applications is indifferent: e.g. it
doesn’t matter if the noun is first unified with the preceding
adjectives and only after the succeeding postposition or vice
versa; both situations show the same amount of information,
the same dependency graph (Figure 4). In such cases, it is
needless to generate both parse trees.

NP

ADJ N PostP

NP

NP

ADJ N PostP

NP

ADJ PostP

N

Different parse trees Same dependency graph

Figure 4: The parse tree is indifferent

Marking one of the irrelevant ordered rules strong
automatically discards the other tree.

3.4. Strong rules to decrease the number of symbols in the
parse tree

The parse speed is usually proportional to the number of
symbols in the parse table. Decreasing the symbol number
speeds up the whole process.

The strong rules keep the number of symbols low by
hiding the unified constituents. It is useful to implement the
visibility property so that the hidden symbols are also
physically removed from the effective parse table.

With strong rules, it is possible that the number of
symbols in the parse table decreases. Figure 5 shows an
example for that (3 2). The strong Rule#1 hides two unified
constituents but creates only one new while disables the other
rule. At special cases it may happen that there are fewer
(visible) symbols at the end of the parse than at the beginning.

Rule#1: C AB
Rule#2: D AB

A B X

CD

A B X

C

A B X

#symbols=3

#symbols=2

Classical model Strong rule model

strong

#symbols=5

Figure 5: Number of symbols in the parse table

4. Implementation issues
The simple implementation model didn’t include neither
conflict resolution nor consistency check.

4.1. Conflict resolution

Figure 6 shows an example for the conflict between multiple
strong rules. Let us suppose that the noun has got two different
morphological parses (e.g. in English “play” as fun and “play”
as drama). As the strong-marked NP N+PostP rule is
applied for the first parse, it hides the PostP; there nothing
remains to unify with the second parse of the noun. The
desired behavior would be that both NP-as are generated and
all the three symbols are hidden.

N
PostP

N N
PostP

N

NP

N
PostP

N

NP NP

Initial state Problem Desired behaviour

Figure 6: Conflict situation

The conflict is solved if the symbols are not directly
hidden by the strong rule. A wait-counter is defined for each
symbol; this counter registers the potential unification
partners (the neighbors). When a potential unification partner
disappears or gets unified, the wait counter decreases. When a
new partner appears, it increases. Symbols become invisible
as the wait counter reaches zero; say there is no more
possibility to early hiding.

The wait counter can be managed using Dijkstra’s P and
V primitives. The following algorithm solves the problem for
2-membered CFG rules with multiple first elements (the parse
goes from left to right, r is the wait counter)

• Initially, r equals to the number of symbols at the
previous position. For the symbols at the first position of
the sentence, r is 1.

• During unification, the new symbol acquires the symbols
at the next position (P primitive)

• For strong rules, at unification, the first constituent
releases the second one (V primitive)

• For any symbol, if the wait counter reaches zero, the
symbol gets invisible (and gets moved away from the
effective parse table.). The invisible symbol releases
everybody.

Using the P and V primitives makes it possible to use the
strong rules in concurrent processing systems, too.

4.2. Consistency

Inconsistency is when a symbol that has just been hidden by a
strong rule was already used by a non-strong one. If the
grammar fulfills a few formally checkable requirements, no
consistency check or restore is needed. In this case the strong-
rules are executed first and non-strong rules come only in the
second round (for more details see [7] and [8]).

5. Evaluation results
Both strong rule models have been implemented and
empirically evaluated. Basically, two efficiency aspects have
been examined: the speed factor that has been measured with
the number of symbols in the parse table and the correctness
factor (if the results contain the correct parse).

We compared the strong rule model (SRP), the strong
symbol model (HumorESK) and a classical model (CYK).

For the correctness measurement, a news corpus of 10000
sentences was used. For the speed measurement, a random
part of the whole corpus consisting of 100 (compound)
sentences was used. The average length of a simple sentence
was 6.77 words, this resulted in 10.63 initial symbols in the
parse table (due to the morphological ambiguity).

5.1. Number of symbols

10,63 8,38

312

69,27

0

100

200

300

400

Initially SRP (Piranha) HumorESK Classical model

Figure 7: Number of symbols

The measurements examined the number of symbols at the
end of the NP level. The reason for choosing this point was
that the detailedness of the parse trees was very different at the
higher levels; so it would be inappropriate to compare them.

Both strong models decreased the number of symbols
considerably. In the case of the strong symbol model a
decrement of 1 magnitude, in the case of the strong rule
model a decrement of 2 magnitudes was experienced. The
strong symbol model was found to contain less visible
symbols at the end than at the beginning of the parse.

5.2. Correctness

Generally, the number of parse trees in the results decreased
while the correct ones were kept. Both strong models were
found to contain the correct parse tree in nearly all cases.
HumorESK had a performance of 95%, Piranha 92%. The
uncovered cases come from misspelled or morphologically
misparsed words. The strong rules model is more sensitive for
the wrong morphological parses.

6. Conclusions
The border problem is a significant factor in making the
syntactical parse more efficient.

The “strong rules” model seems to be a suitable solution
for the border problem while it has got several other
application areas. This model helps to keep the number of
symbols low while the correct parses are kept and several
wrong parses are disabled.

The “strong rules” approach can be combined with other
models (e.g. probabilistic) since they consider different
aspects of the language.

7. Abbreviations
ADV Adverb
CFG Context Free Grammar
CYK Cocke-Younger-Kasami algorithm
N, NP Noun, Nominal Phrase
PostP Postposition
VP Verbal Phrase

8. References
[1] D. Jurafsky, J. H: Martin, Speech and Language

processing. 2000, Prencice Hall, New Jersey
[2] Roark, Brian, Charniak, Measuring efficiency in high-

accuracy, broad-coverage statistical parsing. 2000, In
Proceedings of the COLING-2000 Workshop on
Efficiency in Large-scale Parsing Systems

[3] C. D. Manning, H. Schutze, Foundations of Statistical
Natural Language Processing. 1999,The (MIT) Press

[4] Paul Smolensky, The Initial State and `Richness of the
Base' in Optimality Theory. 1996, John Hopkins
University

[5] HumorESK parser of the MorphoLogic Ltd,
http://www.morphologic.hu

[6] SRP (Piranha) parser of the Budapest University of
Technology and Economics, http://piranha.hit.bme.hu/srp

[7] B. K. Benkő: Sentence-level parsing algorithms for
Hungarian, 2003, Budapest University of Technology
and Economics (in Hungarian)

[8] B. Benkő, T. Katona, P. Varga, Processing Hungarian
texts for information retrieval, 2003, In Proc. of
Hungarian scientific students’ conference (in Hungarian)

