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Abstract 
The efficiency of a syntactical parser can be measured 
according to speed and correctness factors. One reason of the 
inefficiencies is the border problem, which is when a 
constituent is mistakenly assigned to a neighboring one. 

This paper introduces a formal tool that reduces the 
border problem, thus increasing the speed of the parse and 
decreasing the ratio of wrong results. The basic idea of the 
“strong rules” model is that natural languages contain 
definitely unambiguously parsable structures (humans always 
prefer this parse). With marking the borders of such 
structures, the defective expansion of the surrounding 
constituents can be limited.  

Implementation issues and other application areas of the 
“strong rules” model are also discussed. 

1. Introduction 
Syntactical parsers are mainly used for information extraction, 
machine translation and in other high-level text processing 
systems [1]. These applications require fast and unambiguous 
parse results (e.g. a translator is unusable if there are 300 
translations for a single sentence). 

Ambiguity reduction is usually achieved via weighting 
and filtering the symbols: a weight value is assigned to each 
of them; symbols with too small weights are dropped. An 
example is the probabilistic approach, where weights 
represent probabilities [2],[3]. Although the models include 
algorithms for the initial value assignment [4], in practice this 
is one of the weakest points.  

Using the weighting-filtering point of view we can handle 
several language phenomena but not all the problems. The 
strong rule model was designed to handle such an unsolved 
problem. Although at first sight, “strong rules” seem to be a 
variation of the probabilistic approach, detailed description 
shows that they are orthogonal. 

1.1. The border problem 

It can be observed that parsers spend considerable amount of 
time building incorrect parse trees; even if part of these wrong 
trees is filtered soon after creation. The motivation of the 
“strong rules” is to reduce the time spent on building wrong 
trees wherever possible.  
This paper deals with one specific situation, a phenomenon 
that is called the “border problem”. Solving the border 
problem means that the wrong parses are excluded, so both the 
result’s precision increases and the process becomes faster. 

The border problem is when 

• There is an ambiguous constituent (e.g. word) in the 
sentence: it has correct and wrong parses. 

• At the unification phase, the tree containing wrong parse 
doesn’t stop at the real border of the structure; it ranges 
into a neighboring structure. 

The border problem is crucial in some agglutinating 
languages with free word order. In these languages, it is easy 
to see the relationships inside of a structure but a full parse is 
required to determine the borders (e.g. the border between 
two NPs). 
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Figure 1: The border problem 

Figure 1 shows an example for the border problem. The 
first word of the sentence has ambiguous parse (the wrong 
one is marked  gray). The correct parse says that the first two 
and the last three symbols form constituents. In the alternative 
parse, the wrong tree expands into the second structure, also 
resulting in a full coverage. The problem is that not only the 
inner structure of a constituent is corrupted but also the 
border between them is moved. 

1.2. Effects of the border problem 

The border problem degrades both efficiency factors.  

• There are more symbols in the parse table, so the parse 
process requires more time (speed factor). 

• In several cases, the expanding wrong parse also results 
a full coverage. The ratio of wrong trees in the result will 
be higher, which degrades the correctness factor. 

Although, the border problem is not the only reason of the 
efficiency cut, it is a considerable part. Measurements show 
that reducing the border problem results significant 
performance growth (see Section 5). 

1.3. Solution possibilities 

There are two main solution possibilities for the border 
problem.  

The probabilistic approach tries to solve it with assigning 
a high value to the correct parse and giving only a low score 



to the wrong tree. Using a sufficient cutting level, the wrong 
parse is discarded. The main difficulty of this approach is that 
the cutting level must be chosen carefully: with a level too 
low also the correct parses may be discarded; with a level too 
high also the wrong parse is kept, increasing the number of 
symbols in the parse table. Since the probability value 
assignment uses only inner information, this is a quite 
unsolvable task. In several cases, the real probability of the 
structure also depends on the neighboring symbols; which is 
not considered by the probabilistic approach. Furthermore, 
there is no generic possibility to implement mutual exclusion. 

Another approach is to detect and mark the borders of the 
structures where possible. The definitely detected borders are 
marked: they cannot be crossed by the surrounding 
ambiguous parses. So, the spread of the adjacent ambiguity is 
stopped. In the classical models, there is no possibility for 
border marking; the “strong rules” model is based on this 
idea. 

2. The “strong rules” idea 
Adding and managing border marks in a classical parsing 
model would be very a complex and time-consuming task. 
The strong rule model marks the border of a structure so that it 
hides the constituents, only the unified symbol is left in the 
parse table. The definitely correctly parsed structures become 
indivisible units; so the adjacent unambiguous structures 
cannot partially expand into them, causing ambiguity roll-on. 
This general definition can be specialized different ways: 

• Strong rules (definite rules): the constituents unified by a 
strong rule become invisible, that is, no rule can access 
them in the future. 

• Strong symbols: instead of the rules, the symbols are 
marked as strong. A strong symbol hides its inner 
subsets of the same type ( e.g. a 4-word NP hides its 2-
word inner part that is also an NP ) 

Both models have been implemented and evaluated. The 
parser HumorESK of MorphoLogic Ltd. [5] uses strong 
symbols; SRP (Strong Rule Parser, previously Piranha) of 
BUTE [6] is built on the strong rule model. 

Theoretically, the strong symbol model can also be 
derived from the strong rule model so that the recursive rules 
that generate the given symbol (e.g. NP) are marked strong.  

Strength marks should be used with care. Appropriately 
used strong symbols/rules make the parse process faster and 
increase the correctness of the results; inappropriately used 
strong elements may loose correct parses or even cause the 
sentence to be unparsable (e.g. overlapping strong elements). 

2.1. Strong symbols 
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Figure 2: Strong symbol 

Strong symbols are motivated by the quasi-recursive structure 
of Hungarian NP-s and VP-s. In Hungarian, if an adjacent 
symbol can be unified with an NP, the correct parse is always1 
the unified version; even if non-unification also results in full 
coverage.  

Always-expanding symbols are marked strong, which 
means, that the wider symbols hides its narrower constituents,  
like the outer NP hides the inner NP in Figure 2. 

Implementation issues 

Strong symbols can be implemented so that a normal CFG 
execution (e.g. a CYK) is periodically interrupted by a 
cleanup mechanism. The cleanup checks whether newly 
generated strong symbols have inner subsets of the same type 
and hides such subsets (removes them from the parse table). 
The cleanup process can be very expensive; its execution 
should be optimized. 

HumorESK uses a layered grammar: the rules are 
partitioned into successive layers (e.g. NP layer, VP layer, 
compound sentence layer), the parser is restarted at each 
layer. The cleanup process runs only at the end of the layers.  

2.2. Strong rules 

Strong rules are motivated by the border problem. Strong rules 
suppose that there are structures in the language that are 
always definitely parsable (humans always prefer this parse 
even if formally there are other possibilities); and mark them 
as undividable units.  

For example, in Hungarian, the postpositional NP is such 
a structure: the postposition always belongs to the preceding 
NP2; even if morphological ambiguity lets other possibilities.  

NP

NP
PostP

VP

NP PostP VP

S

VP

NP ADV VP

S

Sentence

Correct parse Wrong parse

morphological 
ambiguity

ADV

 

Figure 3: Strong rule for postpositional NP 

Often, the postposition has the same word form as the 
adverb part of a phrasal verb (Figure 3); so, there are two 
formally correct possibilities for a full coverage, but humans 
always prefer the NP-PostP version. If we mark the rule that 
unifies the NP and the PostP as strong, it hides the unified 
symbols (hiding is marked as light gray lines). So, the wrong 
parse gets disabled: it fails since the first word of the sentence 
is hidden (by the strong rule) and without this word no full 
coverage is resulted. (The figure shows the wrong parse in the 
case of a non-hidden first word.) 
                                                           

1 Exceptions are very rare and can be handled with specific rules. 
2 The word order might be unclear for the readers not familiar 

with the Hungarian language: ‘behind the chair’ is expressed 
as [the][chair][behind-of]  



Strong rules can be used to describe definite or preferred 
grammatical structures (e.g. NP-PostP in Hungarian) or 
proverbs and sayings.  

Implementation model 

The simplest implementation model is to add a visibility field 
to the symbols in a normal CFG execution model. Strong rules 
set the visibility value to false. This model is the basis of the 
detailed one (see Section 4). 

3. Application areas of the “strong rules” 
There are several application areas for the strong rules. 

3.1. Strong rules for the border problem 

First of all, strong rules can be used as a solution for the 
border problem. Hiding the unified constituents defines the 
borders of the structure, so the spread of the surrounding 
ambiguity is stopped. 

3.2. Strong rules for mutual exclusion of rules 

Strong rules can also be used for ranking rules that are 
applicable for the same set of symbols.  

Suppose that there are two rules: a general one and a 
specific one. The goal to achieve is mutual exclusion: if the 
specific rule is applicable the general one should not be 
applied. (In classical models there is no possibility for that.) 
This problem often occurs when working with proverbs: the 
proverb-recognizer rule should disable the word-by-word 
processing rules. 

Making the specific rule strong implicitly gives a 
solution. If the specific rule cannot be applied, obviously the 
general rules are executed. As the specific rule is applicable, 
it hides the unified symbols, so the general rules will have 
nothing to be applied on. 

3.3. Strong rules for inner structure disambiguation 

In several cases, only partial information of the parse tree is 
used by the caller (e.g. by an information extraction system). 
Often, the order of the rule applications is indifferent: e.g. it 
doesn’t matter if the noun is first unified with the preceding 
adjectives and only after the succeeding postposition or vice 
versa; both situations show the same amount of information, 
the same dependency graph (Figure 4). In such cases, it is 
needless to generate both parse trees. 
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Figure 4: The parse tree is indifferent 

Marking one of the irrelevant ordered rules strong 
automatically discards the other tree. 

3.4. Strong rules to decrease the number of symbols in the 
parse tree 

The parse speed is usually proportional to the number of 
symbols in the parse table. Decreasing the symbol number 
speeds up the whole process.  

The strong rules keep the number of symbols low by 
hiding the unified constituents. It is useful to implement the 
visibility property so that the hidden symbols are also 
physically removed from the effective parse table.  

With strong rules, it is possible that the number of 
symbols in the parse table decreases. Figure 5 shows an 
example for that (3 2). The strong Rule#1 hides two unified 
constituents but creates only one new while disables the other 
rule. At special cases it may happen that there are fewer 
(visible) symbols at the end of the parse than at the beginning. 
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Figure 5: Number of symbols in the parse table 

4. Implementation issues 
The simple implementation model didn’t include neither 
conflict resolution nor consistency check.  

4.1. Conflict resolution 

Figure 6 shows an example for the conflict between multiple 
strong rules. Let us suppose that the noun has got two different 
morphological parses (e.g. in English “play” as fun and “play” 
as drama). As the strong-marked NP N+PostP rule is 
applied for the first parse, it hides the PostP; there nothing 
remains to unify with the second parse of the noun. The 
desired behavior would be that both NP-as are generated and 
all the three symbols are hidden. 
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Figure 6: Conflict situation 

The conflict is solved if the symbols are not directly 
hidden by the strong rule. A wait-counter is defined for each 
symbol; this counter registers the potential unification 
partners (the neighbors). When a potential unification partner 
disappears or gets unified, the wait counter decreases. When a 
new partner appears, it increases. Symbols become invisible 
as the wait counter reaches zero; say there is no more 
possibility to early hiding. 



The wait counter can be managed using Dijkstra’s P and 
V primitives. The following algorithm solves the problem for 
2-membered CFG rules with multiple first elements (the parse 
goes from left to right, r is the wait counter) 

• Initially, r equals to the number of symbols at the 
previous position. For the symbols at the first position of 
the sentence, r is 1. 

• During unification, the new symbol acquires the symbols 
at the next position (P primitive) 

• For strong rules, at unification, the first constituent 
releases the second one (V primitive) 

• For any symbol, if the wait counter reaches zero, the 
symbol gets invisible (and gets moved away from the 
effective parse table.). The invisible symbol releases 
everybody. 

Using the P and V primitives makes it possible to use the 
strong rules in concurrent processing systems, too. 

4.2. Consistency 

Inconsistency is when a symbol that has just been hidden by a 
strong rule was already used by a non-strong one. If the 
grammar fulfills a few formally checkable requirements, no 
consistency check or restore is needed. In this case the strong-
rules are executed first and non-strong rules come only in the 
second round (for more details see [7] and [8]). 

5. Evaluation results 
Both strong rule models have been implemented and 
empirically evaluated. Basically, two efficiency aspects have 
been examined: the speed factor that has been measured with 
the number of symbols in the parse table and the correctness 
factor (if the results contain the correct parse). 

We compared the strong rule model (SRP), the strong 
symbol model (HumorESK) and a classical model (CYK). 

For the correctness measurement, a news corpus of 10000 
sentences was used. For the speed measurement, a random 
part of the whole corpus consisting of 100 (compound) 
sentences was used. The average length of a simple sentence 
was 6.77 words, this resulted in 10.63 initial symbols in the 
parse table (due to the morphological ambiguity). 

5.1. Number of symbols 
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Figure 7: Number of symbols 

The measurements examined the number of symbols at the 
end of the NP level. The reason for choosing this point was 
that the detailedness of the parse trees was very different at the 
higher levels; so it would be inappropriate to compare them. 

Both strong models decreased the number of symbols 
considerably. In the case of the strong symbol model a 
decrement of 1 magnitude, in the case of the strong rule 
model a decrement of 2 magnitudes was experienced. The 
strong symbol model was found to contain less visible 
symbols at the end than at the beginning of the parse.  

5.2. Correctness 

Generally, the number of parse trees in the results decreased 
while the correct ones were kept. Both strong models were 
found to contain the correct parse tree in nearly all cases. 
HumorESK had a performance of 95%, Piranha 92%. The 
uncovered cases come from misspelled or morphologically 
misparsed words. The strong rules model is more sensitive for 
the wrong morphological parses. 

6. Conclusions 
The border problem is a significant factor in making the 
syntactical parse more efficient.  

The “strong rules” model seems to be a suitable solution 
for the border problem while it has got several other 
application areas. This model helps to keep the number of 
symbols low while the correct parses are kept and several 
wrong parses are disabled. 

The “strong rules” approach can be combined with other 
models (e.g. probabilistic) since they consider different 
aspects of the language. 

7. Abbreviations 
ADV Adverb 
CFG Context Free Grammar  
CYK Cocke-Younger-Kasami algorithm 
N, NP  Noun, Nominal Phrase 
PostP Postposition 
VP Verbal Phrase 
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