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Abstract

This paper formulates the visual object recognition prob-
lem in the discriminant analysis framework and presents
a kernelized version of the transformational approach of
distance-based discriminant analysis. The sought trans-
formation is found as a solution to an optimization prob-
lem formulated in terms of inter-observation distances
only, using the technique of iterative majorization. The
proposed approach is non-parametric, and can determine
the dimensionality of the target space automatically since
the process of feature extraction is fully embedded in
the optimization procedure. Performance tests and ex-
periments in the application of visual object and content-
based image categorization demonstrate very competitive
results in comparison to several popular existing tech-
niques.

1. Introduction

Object recognition, as a fundamental computer vision
problem, has long been a major focus of ongoing re-
search, which lead to the development of a variety of
methods and techniques proposed to date, e.g., [1, 2, 3,
4]. With the exception of several notable contributions,
e.g., [5, 6], many approaches essentially treat the classi-
fier as a black box completely isolated from the feature
extraction process, which ultimately leads to suboptimal
results. There exist numerous dimensionality-reducing
data transformation methods originating from families as
diverse as discriminant analysis techniques (LDA, DF-
LDA, GDA), their advanced extensions (SHOSLIF, Fish-
erfaces), non-linear mappings (MDS, SOM) and neural
networks (NeuroScale), yet, the answers to important
questions, such as “How many dimensions are enough to
discriminate among given classes?”, still remain vague.

In order to address these issues, we investigate the
problem of object categorization in the discriminant anal-
ysis framework and propose a method, alongside with its
kernel-based extension, for finding a discriminative trans-
formation of the original visual feature data. Based on the
compactness hypothesis [7], the sought transformation
specifically aims at improving the accuracy of the near-

est neighbor (NN) classifier [8] and implicitly integrates
the feature extraction process in the problem formulation.
Additional constraints are imposed to prevent overfitting
and thus improve generalization abilities of the proposed
method.

The remainder of this paper is structured as follows.
In section 2 we formulate the task of deriving a discrimi-
nant transformation as a problem of minimizing an asym-
metric criterion based on the compactness hypothesis. In
section 3 we review the iterative majorization method and
demonstrate how it can be used to minimize the chosen
criterion, while section 4 briefly describes a kernelized
extension of the presented method. We detail our experi-
mental results for both benchmark and real-world image
data sets in section 5.

2. Problem formulation

Suppose that we seek to distinguish between two classes
represented by data sets � and � having �� and ��

�-dimensional observations, respectively. For this pur-
pose, we are looking for such transformation matrix � �
�
��� such that �� � � �� � �� � �� � ��, that the com-

pactness hypothesis holds for either of the two classes in
question, while its opposite is true for both.

Now, we must reiterate that our primary goal is to
improve the NN performance on the task of discriminant
analysis. This implies, first of all, that the sought problem
formulation must relate only to the factors that directly in-
fluence the decisions made by the NN classifier, namely
- the distances among observations. Secondly, in order
to benefit as much as possible from the non-parametric
nature of the NN, the sought formulation must not rely
on the traditional class separability and scatter measures
that use class means, weighted centroids or their variants
which, in general, connote quite strong distributional as-
sumptions. Finally, an asymmetric product form should
be more preferable, justified as consistent with the prop-
erties of the data encountered in the target application
area of multimedia retrieval and categorization [9]. More
formally, these requirements can be accommodated by
an optimization criterion expressed in terms of distances



among the observations from the two data sets as follows:
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where the numerator and denominator of (1) represent the
geometric means of the within- and between-class dis-
tances, respectively, and ���� denotes a Huber robust es-
timation function [10]. The choice of Huber function in
(1) is motivated by its ability to switch from quadratic to
linear penalty allowing to mitigate the consequences of
an implicit unimodality assumption of the formulation.
In the logarithmic form, criterion (1) is written as:
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Our previous studies [11, 12] have shown that neither
straightforward gradient descent nor some of the state-
of-the-art optimization routines are suitable for solving
the above optimization problem mostly due to suscep-
tibility to local minima, computational complexity and
difficulties related to the discontinuities of the derivative
of (2). However, by deriving some approximations of

	 �� � and 

�� � one can make the task of minimizing
��� ��� � criterion amenable to a simple iterative proce-
dure based on the majorization method, which we discuss
in the following section.

3. Iterative majorization

3.1. General overview of the method

As stated in [13, 14, 15], the central idea of the majoriza-
tion method is to replace the task of optimizing a com-
plicated objective function ��� by an iterative sequence
of simpler minimization problems in terms of the mem-
bers of the family of auxiliary functions ���� ���, where
� and �� vary in the same domain �. In order for ���� ���
to qualify as a majorizing function of ���, the auxiliary
function ���� ��� is required to: (a) have a unique mini-
mum, (b) always be greater than or equal to the original
objective function, and (c) touch the surface of the origi-
nal function at the supporting point ��.

Once an appropriate function ���� ��� has been found,
the iterative majorization algorithm proceeds as follows.
After assigning an initial supporting point ��, the suc-
cessor point �� is found by minimizing ���� ���. The

obtained �� subsequently becomes the next supporting
point, and the process repeats until there is no improve-
ment in the value of the objective function, i.e., conver-
gence is reached.

3.2. Optimizing ��� ��� � by iterative majorization

It can be verified that majorization remains valid un-
der additive decomposition [15]. Therefore, a possible
strategy for majorizing (2) is to deal with 
	 �� � and
�

�� � separately and subsequently recombine their re-
spective majorizing expressions.

We begin by noting that both logarithm and Huber
distance are majorizable by linear and quadratic func-
tions, respectively [15, 12]. This fact makes it possible
to derive a majorizing function of 
	 �� � as follows:
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where �� �� � �
��� , �� is a supporting point for � , ����

is a weight of the Huber function majorizer, as defined
in [15], and �� is a constant that collects all of the terms
that are irrelevant from the point of view of minimization
with respect to � (see [12] for detailed derivations). In
the matrix form, the above formulation can be expressed
as:
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where� is a square symmetric design matrix, as specified
in [12].

As for �

�� �, we start out by expressing its ev-
ery term using a second order Taylor series expansion 1 of
the logarithm function around a supporting point �� . In
the resulting formulation, the sum of Euclidean distances
can be majorized by a rule based on the Cauchy-Schwarz
inequality [13, 15] (again, see [12] for derivation details).
In the matrix form, the resulting majorizing function of
�

�� � can be expressed as:
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1Note that the use of a Taylor series expansion instead of the neg-
ative logarithm makes it impossible to guarantee that majorization re-
quirement (b) from section 3.1 is always satisfied, even though the mini-
mum of the quadratic approximation lies in the direction of the steepest
descent at all times. To counter rare yet theoretically possible conse-
quences of such simplification we modify the quadratic Taylor series
expansion whenever a problem is encountered so that the approxima-
tion becomes more conservative (i.e., the minimum is closer to the sup-
porting point) and repeat current iteration.



where � is the matrix obtained by joining � and � to-
gether, row-wise, and� is a square symmetric design ma-
trix of size � � �� �� , as defined in [12].

Finally, combining results (4) and (5), we obtain a
majorizing function of the ��� ��� � optimization crite-
rion:
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that can be used to find an optimal transformation � min-
imizing ��� ��� � criterion via the iterative procedure out-
lined in section 3.1. Similarly to the last terms in (4) and
(5), �� is a constant that collects all of the other terms
that are irrelevant from the point of view of minimization
with respect to � .

While it is possible to minimize (6) by setting its
derivative to zero and solving the resulting system of lin-
ear equations, it is often recommended [16] that a length-
constrained solution be found, especially in the case of
classifiers capable of achieving zero training error, to pre-
vent overfitting. By incorporating the constraint into the
Lagrangian, we obtain a standard trust-region subprob-
lem formulation, for which efficient solution methods ex-
ist [17, 18]. Once solved for, an iterate of � can easily
help determine the sufficient dimensionality of the target
space � via the number non-zero singular values of � .

4. Kernel-based extension

According to the definition [19], kernel ��� �� ��� im-
plicitly projects �� and �� into some, possibly infinite-
dimensional, feature space� and returns their dot prod-
uct in that feature space ����� ��� 	 �����

�����,
such that ���� is a mapping function that is never ex-
plicitly computed. Substituting in (1) the distances
in the original feature space by those in � expressed
solely via dot products ���	
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��� � 	��� ��� , we obtain a trivial kernel-based
extension of the proposed method. Moreover, relying on

the generalized Gaussian kernel ��� � ��
���

�	� , we derive
a fomulation similar to (2), where ������ is replaced by
a concave function with similar properties from the point
of view of majorization procedure. Therefore, the same
algorithm is used, provided the necessary adjustments to
the design matrices � and �.

5. Experimental results

For our object categorization experiments we chose a re-
cently developed database ETH80 composed of entities
corresponding to the basic level of human knowledge or-

ganization [20]. The database contains high-resolution
color images of 80 objects from 8 different classes, for
a total of 3280 images. The visual information for each
image was represented by 286-dimensional feature vector
containing 166 global color histogram and 120 Gabor fil-
ter texture descriptors extracted by the Viper system [21].
The training set comprised images taken one per class
object viewed from a fixed position, while the rest was
allocated to the test set. The results comparing NN clas-
sification performance in the original feature space (NN)
and those derived by the proposed method (DDA+NN)
or its kernel extension (KDDA+NN) are summarized in
Table 1, showing an improvement over the baseline clas-
sifier.

Table 1: Results for the ETH80 image database

% Error rate
Object class NN KDDA+NN DDA+NN
(1) Apple 4.47 1.00 0.75
(2) Car 14.47 5.00 5.78
(3) Cow 12.12 9.44 10.97
(4) Cup 3.09 0.94 2.22
(5) Dog 14.00 11.00 12.72
(6) Horse 14.47 9.44 13.16
(7) Pear 6.13 3.56 3.84
(8) Tomato 2.50 1.69 1.88

In addition to the tests mentioned above, we also ex-
plored empirically the influence of the DDA transforma-
tion on the performance of other popular classification
methods, including NN as a baseline, on the real-world
image categorization. For these experiments, three po-
tentially overlapping image sets were selected from the
Washington University annotated image collection [22],
based on the presence of keywords “trees”, “cars” and
“ocean” in their annotation, testing every classifier by 10-
fold cross-validation. The remarkable results of these ex-
periments demonstrate that applying the DDA transfor-
mation not only consistenly improves NN classifier ac-
curacy (as expected), but also provides a boost in perfor-
mance to some more advanced non-linear classification
methods, such as SVM [19], as shown in Table 2.

Table 2: Image categorization results

Classifier % Error on image data set
Trees Ocean Cars

Fisher’s LDA 43.89 45.56 17.72
NN 38.33 19.44 2.46
SVM (linear) 31.11 21.11 1.58
SVM (gaussian) 23.89 16.67 1.58
DDA+SVM (gaussian) 20.00 11.11 1.40
KDDA+NN 18.89 18.33 1.25
DDA+NN 18.86 18.33 1.23
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