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Abstract

A family of one-class classification methods is ex-
tended by the determinant maximization novelty detec-
tion (DMND) model based on the D-optimum experi-
mental design approach for the ellipsoid estimation. Sim-
ilar to the one-class classification methods based on the
support vector machine or the so-called support vector
data description (SVDD) approach, DMND is a method
that fits a geometrical object around the training data.
However, in contrast to SVDD, DMND finds the hyper-
ellipsoid of the smallest volume covering the target ob-
jects that can contain outliers by maximizing the deter-
minant of an information matrix. Simulation results are
presented for the case when training data are contami-
nated by compactly located outliers.

1. Introduction

In practice, there are many applications in which it is rel-
atively easy to collect data corresponding to target data
but expensive or even economically impossible to obtain
abnormal measurements that correspond to certain rare
events. Therefore, the direct application of the two-class
classification framework to such unbalanced datasets can
lead to poor performance unless we incorporate a priori
information about which data points belong to the target
class and which are outliers.

In order to overcome these drawbacks of classical
methods a number of outlier or novelty detection meth-
ods based on nonparametric [4, 2, 6], semi-parametric
and parametric [6, 7] statistical approaches, support vec-
tor techniques [9, 3, 11] and neural networks [16] have
been proposed.

There are two main approaches to statistical novelty
detection methods based on extraction of a novelty model
from the training dataset. The first approach employs in-
formation about the probability density function of fea-
tures extracted from target measurements. In this case
a decision about novelty identification is based on the
probability density function (pdf) p(x|target) and a pre-
defined threshold T [2, 6]. A test sample is believed to be

an outlier when the level of the density there is less than
T , i.e, p(x|target) < T .

The performance of methods based on such an ap-
proach depends mainly on the dimensionality of data,
the sample size, the choice of the novelty threshold T
and how well target data is represented. Besides, usually
the choice of the threshold T is based on heuristics [2].
Moreover, after learning the novelty model and setting
the threshold T it is not necessary to retain knowledge of
the complete pdf p(x|target), because knowledge about
the support of distribution Snov where p(x|target) > T
holds provides the same amount of information as is
needed for novelty detection in the test stage. In prac-
tice, we have to carry out three steps: 1) estimate the pdf
p(x|target) and choose the threshold T ; 2) obtain the
support of the distribution Snov; 3) apply the classifica-
tion rule x ∈ Snov to check if test point is an outlier or
not.

The second approach to novelty detection is based on
the last two steps, i.e. the direct estimation of the sup-
port of the distribution of the target data and analysis of
whether the test point belongs to the support Snov (target
data) or not (outliers) [9, 3, 12]. Our approach is mainly
motivated by the theory of optimal experimental design
[13] and treatments of the one-class classification prob-
lem [10, 9, 11, 12], and can be considered as the exten-
sion of the minimum volume ellipsoid (MVE) algorithm
based on D-optimality [13] to cover the case when data
is contaminated by outliers.

The paper is organized as follows. The MVE and
DMND algorithms are described in Section 2. Simulation
results are demonstrated in Section 3, and conclusions are
provided in Section 4.

2. Determinant Maximization Novelty
Detection

In this section we give a short derivation of the maximum
determinant novelty detection method. This is an one-
class classifier inspired by the MVE method [13] and the
novelty detection approach based on the support vector



machine [10, 11, 12].
There is sound theory behind the support vector ma-

chine and a number of statistical classification meth-
ods are kernelized using the so-called “kernel trick”
[15, 11]. The flexibility of distribution support in the
SVDD method [10, 11, 12] can be changed for example
by applying different values of the smoothing parameter
if a Gaussian kernel is used. When the smoothing param-
eter is sufficiently large the distribution support is simply
a hypersphere that can be obtained by SVDD even with-
out the kernel trick. On the other hand use of a small
value for the smoothing parameter permits us to get a de-
scription of data that can be obtained by the Parzen Win-
dow approach [11]. The appropriate value of the smooth-
ing parameter can be selected by cross-validation meth-
ods.

However, in many cases real data are not well scaled,
and it is therefore difficult to expect that experimental
measurements can be well described by hyperspheres.
Besides, employing the kernel trick can lead to ovefitting
or bad generalization performance of a one-class classi-
fier when data is indeed multivariate Gaussian contami-
nated by some outliers.

There are a number of classical statistical methods
such as Hotelling’s T 2 statistic [17], that require ro-
bust estimates of location and scatter. Please, note that
strictly speaking classical Hotelling’s T 2 statistic uses
non-robust estimates of location and covariance matrix
[1]. Therefore, it is useful to have a novelty detection
method that could produce an ellipsoidal support, and and
if it is necessary a more flexible description by changing
just a few parameters. Herein we consider the case when
the support of the training data is ellipsoidal. To describe
the support of distribution we enclose the data with a k-
dimensional ellipsoid with minimum volume. By mini-
mizing the volume of hyperellipsoid we expect to reduce
the rate of outlier acceptance or minimize the error of sec-
ond kind.

Assume that we have a training dataset containing n
samples, {xi ∈ Rk×1}n

i=1. In order to solve the MVE
problem we need to obtain a (k × k) positive definite
matrix M ∈ Rk×k and the center of the ellipsoid c so
as to maximize det M−1 subject to [13]

(xi − c)T M−1 (xi − c) ≤ k (1)

The MVE for the dataset {xi}n
i=1 must go through at

least k + 1 and at most 1
2k(k + 3) + 1 support vectors.

The dual optimization problem of the MVE problem (see
(1)) is that of minimizing − log detM(α) with respect
to α, where M(α) =

∑n
i=1 αi(xi − c)(xi − c)T and

c =
∑n

i=1 αi xi; α = {α1, α2, ..., αn} are nonnegative
numbers summing to 1 and M(α) might be called the
“corrected” information matrix for the probability mea-
sure α (see [13] for details).

We propose to reformulate the MVE problem into

min f(Md) + R2

s.t.

(xi − c)T M−1
d (xi − c) ≤ R2

where Md is a k×k positive definite matrix, R is an arbi-
trary value not equal to zero, and f(Md) = log detMd.
Other choices of the objective function f(·) can be based
on the trace of the matrix Md.

In this formulation the size of the ellipsoid can be
changed by varying the choice of matrices Md, the func-
tion f(·) or R, but large values of R2 should be penalized.
Because Md is just scaled version of the matrix M we
omit the index d for simplicity of notation. Then we in-
troduce slack variables and permit some of the data sam-
ples to be outside of the ellipsoid. In order to control the
volume of the ellipsoid an extra parameter ν ∈ [0, 1] is in-
troduced. In the case when f(Md) is equal to log detMd

this leads to the following optimization problem

min ε(M, c, R) = log detM + R2 +
1
νn

n∑
i=1

ξi

s.t.

(xi − c)T M−1(xi − c) ≤ R2 + ξi,

M � 0, ξi ≥ 0.

Then we use the Lagrange optimization technique in
order to incorporate the constraints into ε(M, c, R) and
construct the Lagrangian L as [11, 15]

L = ε(M, c, R) − ∑n
i=1 αi{R2 + ξi−

(xi − c)T M−1(xi − c)} − ∑n
i=1 γiξi,

αi ≥ 0, γi ≥ 0 .

After setting the partial derivatives of L with respect
to R, c, M−1 to zero and some simple algebra we obtain

∂L

∂M−1
= 0 =⇒ Mα =

∑n
i=1 αi(xi − c)(xi − c)T

∂L

∂c
= 0 =⇒ c =

n∑
i=1

αi xi

∂L

∂R
= 0 =⇒

n∑
i=1

αi = 1

∂L

∂ξi
= 0 =⇒ γi =

1
νn

− αi

α > 0 and γi > 0 =⇒ 0 ≤ αi ≤ 1
νn

.

Resubstituting these values into the Lagrangian L and
noting that the following factor equals to const

n∑
i=1

αi(xi − c)T M−1
α (xi − c) = tr(M−1

α Mα) = n



gives us the following dual optimization problem to be
satisfied by the Lagrangian multipliers α:

min ε(α) = − log det

{
n∑

i=1

αixixT
i − ccT

}
(2)

s.t.
n∑

i=1

αi = 1, 0 ≤ αi ≤ 1
νn

,

where c =
∑n

i=1 αixi. The optimization criteria
− log detMα is strictly convex on all possible nonneg-
ative definite matrix Mα and therefore the optimization
problem has a unique optimal solution Mα and c but not
α.

If we introduce an extra dimension for the training
data {xi}n

i=1 such as x̃T
i =

[
xT

i , 1
]

and ν → 0 (no out-
liers) then the above optimization problem (see (2)) can
be placed into D−optimum design framework [13]. Be-
sides, when it is known a priory that there is no outliers
(ν → 0) in the dataset and data {xi}n

i=1 is centered in the
origin (c = 0) in this case it is also can be considered as
standard D − optimum design problem [13].

After obtaining values α (see (2)) in order to check if
the test point xt belongs to the estimated support we can
employ the following rule

(xt − c)T M−1
α (xt − c) ≤ R2 (3)

where R2 is normalized by Mα squared distance or
squared Mahalanobis distance from the center of the el-
lipsoid to the one of the support vectors xbsv that lies on
its boundary:

R2 = (xbsv − c)T M−1
α (xbsv − c), αbsv =

1
νn

.

3. Experiments

In this section we show preliminary results that character-
ize the performance of the proposed algorithm for target
data both without and with outliers in training datasets
(Fig. 1,2).

Our code was based on the fmincon Matlab func-
tion with a default of 400 epochs, but Newton-like and
interior-point methods using linear matrix inequality con-
straints can be used instead [14]. The sample size of tar-
get set was n = 100 (Fig.1) and there were 4 outliers
(Fig.2). Compact located outliers increase the bias of lo-
cation estimation. There is a clear indication that DMND
method can be used to estimate a sample mean and co-
variance matrix when data samples are contaminated by
outliers (Fig.2) if appropriate scaling is applied.

The squared Mahalanobis distance [5] is often used to
find outliers in multivariate data (see Fig. 3, 4) [8]. After
robust estimates of the mean and covariance matrix have
been obtained the decision about whether a test point is
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Figure 1: Illustration of the maximum determinant nov-
elty detection approach when data are not contaminated
by outliers. The ellipsoid shows the estimated distribu-
tion support and indicates which support vectors are on
its boundary (triangles) and which fall outside (circles),
n = 100, ν = 0.05
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Figure 2: Illustration of the maximum determinant nov-
elty detection approach when data are contaminated by
compact outliers. The ellipsoid shows the estimated dis-
tribution support and indicates which support vectors are
on its boundary (triangles) and which fall outside (cir-
cles), n = 104, ν = 0.4

an outlier or not can be based on the rule (3). It can be
seen that samples that correspond to outliers have larger
Mahalanobis distances (Fig. 4) than target data without
outliers (Fig. 1). Therefore, squared Mahalanobis dis-
tance can be used to reject outliers.

However, our experience with the algorithm shows
that the method cannot deal with a large number of out-
liers, and the breakdown point of method should be ana-
lyzed. It means that the DMND method does not find the
MVE in all cases when training datasets are contaminated
by outliers.

4. Conclusions

In this paper we have proposed the robust maximum de-
terminant novelty detection method. We have presented
the derivation of the robust maximum determinant nov-
elty detection algorithm for the minimum volume el-
lipsoid estimation with outliers. The simulation results
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Figure 3: Squared Mahalanobis distance (see (3)) for
dataset without outliers and indication of the threshold
R2(dashed line). The horizontal axis corresponds to the
number of sample and the vertical axis to the value of the
squared Mahalanobis distance, n = 100, ν = 0.05

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

Figure 4: Squared Mahalanobis distance (see (3)) for
dataset with outliers and indication of the threshold R2

(dashed line). The horizontal axis corresponds to the
number of sample and the vertical axis to the value of
the squared Mahalanobis distance, n = 104, ν = 0.4

show the proposed novelty detection method based on
D-optimality and slack variables can be applied to data
samples contaminated by compactly located outliers.
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