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ABSTRACT

Phonetic baseforms are the basic recognition units in
most speech recognition systems. These baseforms are
usually determined by linguists once a vocabulary is
chosen and not modified thereafter. However, several
applications, such as name dialling require the user to be
able to add new words to the vocabulary. These new
words are often names or task-specific jargons that have
user dependent pronunciation.

In this paper, we describe a method how to generate a
phonetic baseform from acoustic pronunciation of a
name without a prior knowledge of the name spelling.
We used a language model based on bigram statistics.

1. INTRODUCTION

There has been  considerable  interest in
telecommunications and embedded speech recognition
application that provide personalized vocabularies.
Name dialling is one such example of a telephonic
application where it is necessary to have ability to
provide speaker dependent vocabularies for repertory
dialling. This feature enables the user to add even such
words to the personalized vocabulary for which a
spelling or acoustic representation does not exist in the
speech recognition lexicon, and associate these words to
a phone number to be dialled. We will show how
speaker dependent baseforms could be derived from one
or two speech utterances by using speaker independent
acoustic model and a language model. We use the
bigram probabilities to constrain the transition between
phonemes.

The structure of this paper is as follows. In Section 2 we
present our recognition system and its components:
Speech recognition engine, acoustic modelling,
front-end, labeller and decoder. In Section 3 we describe
baseform generating algorithm. The mumble model is
described in Section 4. In Section 5 language model for
names and surnames of Czech Republic inhabitants is
described. Experimental results are contained in Section
6 and Section 7 is conclusion.
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2. SYSTEM OVERVIEW

The speech recognition engine is based on a statistical
approach. It comprises a front-end, an acoustic model, a
language model and a decoding block [1].

Acoustic Modelling: As a basic speech unit of the
recognition system a triphone is used. Each triphone is
represented by a 3-state left-to-right HMM with a
continuous output probability density function assigned
to each state. Each density is expressed as a mixture of
multivariate Gaussians with a diagonal covariance
matrix. The Czech phonetic decision trees were used to
tie states of Czech triphones.

Front-end: The speech signal is digitized through a
telephone board at 8 kHz sample rate and converted to
the mu-law 8-bit resolution format. The parametrization
process used in our system is as follows: Firstly the pre-
emphasized acoustic waveform is segmented into 25
millisecond frames every 10ms. A Hamming window is
applied to each frame and 13 MFCCs (including the
energy coefficient co) are computed. The first-order and
second-order derivates of MFCCs are computed and
appended to the static MFCCs each speech frame.

Labeller: The recognition algorithm uses 2510 different
tie states, each of which represented by a mixture of 8
Gaussian distributions in the 39-dimensional space. Thus
during a decoding it is necessary to compute a large
number of log-likelihood scores (LLSs) every 10ms. In
order to perform the recognition in real time the number
of calculations is reduced by applying a technique which
seeks to find and precisely determinate only first 150
most probable LLSs. This technique efficiently uses
relevant statistical properties of the Gaussian mixture
densities combining them with “a priority hit” technique
and the kNN method. This approach allows more than
90% reduction of a computation cost without substantial
decrease recognition accuracy.

Decoder: The decoder uses a crossword context
dependent HMM state network generated by a Net
generator. The input of the Net generator is a text
grammar format represented by an extended BNF with
respect of JSGF. The whole net consists of one or more
in run-time connected regular grammars. A considerable
part of the net is usually generated before the decoder
starts but every part of the net can be generated on
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demand in run-time. The decoder utilizes a Viterbi
search with a beam pruning.

3. PHONETIC BASEFORMS

Phonetic baseforms are the basic recognition units in
most speech recognition systems. These baseforms are
usually determined by linguists once a vocabulary is
chosen and not modified thereafter. However, several
applications, such as name dialling, require the user be
able to add new words to the vocabulary. These new
words are often names or task-specific jargons that have
user dependent pronunciations.

The phonetic baseform is sequence of phonemes which
represents a given utterance (name). We can create it
manually (by phonetic transcription rules) or
automatically.

Example of baseform (for the Czech phonetic alphabet):

Name: Lud&k Miiller
Manually: silludjeksilmilersil
Automatic: silrideptsilmelaarsil

Some utterances can be pronounced by several ways
depending on speaker, speaking style, and other
conditions. Therefore, generally more than one baseform
can be constructed and stored for an utterance (e.g. a
person name). In this work we used only one phonetic
baseform for each person name.

Each baseform can be easily added manually. In the case
of automatic baseform generation the user for example
can be required to say the given person names twice and
for each utterance a baseform should be automatically
generated.

The baseform generation algorithm is based on Viterbi
algorithm [3] that searches the best phoneme path
through the HMM net consist of all Czech phonemes and
a set of phoneme transitions. The net structure is
dependent on the language (phoneme) model and can be
interpreted also as so-called mumble model described in
more detail in the Section 4.

Also N-best hypotheses instead the first best hypothesis
can be considered and in this case the decoder should
produce a list of the most probable phoneme sequences.
The recognition results can be stored as well in a
phoneme graph which is an analogy to the word graph in
the case of N-best word sequences decoding problem.

4. MUMBLE MODEL

The mumble model is constructed as a set of HMM [4]
models connected in a parallel fashion. Each HMM
model is 3-state left-to-right and represents one context-
independent phone. The structure of the mumble model

is depicted in Figure 1. Actually the probabilities of
emission of an observation vector in a given state are
evaluated as the maximal emission probability of all
corresponding states of context-dependent triphones.
Thus neither additional HMM meodels nor additional
training is required. The value of the backward loop
probability BPr causes a various length of the phone
sequence recognized by the network in Figure 1. While
the higher value produces more insertions, the small
value induces more deletions in the resulting phone
sequence.

BPr

Figure 1.

In Figure 2. is mumble model with language model basis
on bigrams with full matrix of transition probabilities.
Language model is described in Section 5.
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5. LANGUAGE MODEL

The language model generally restricts variety of words
sequences W and consequently also phone sequences.
This restriction may be either deterministic (i. e. some
words or phones sequence are not allowable) or "softer"
stochastic (some word sequence are less probable). In
our case we chose a probabilistic approach and an
absolute discounting language model with backing-off
for conditional probabilities method.

The basic idea of the absolute discounting language
model with backing-off for conditional probabilities is to
keep a high number of joined events (h, w), a word
history h and a word w, almost unmodified. We suppose
that the number of occurrences of joined events in
training text will not change probably too much, if we
select another training text of the similar size (from the
same problem area). To consider possible variability of
the number N(h, w) of occurrences (h, w) in text we
introduce parameter of permanent deviation b,, so-called
absolute discounting parameter that decreases the
number of seen events N(k, w). Furthermore we suppose
that b, is not dependent directly on the value N(h, w),
nevertheless it is dependent on the history A. This
deviation must remain negative because unseen events in
the text requires nonzero (thus positive) probabilities. By
means of absolute discounting parameter b, the part of
probability mass is redistributed from the seen events to
unseen events. The resulted formulae for the absolute
discounting language mode) is:
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where ﬁ(wIE) is a conditional probability of observing
the word w given the generalized history h . The
generalized (also reduced) history h is defined as:

¥ (hw) n-gram (w,,w,,..,w,), then (i_t,w) is

(n-1)-gram (w,,....w,).

Our language model was created for names and
surames occurring in Czech Republic. We had at
disposal 4 137 different names and 236 769 different
surnames. In total we had 10282470 names and
10296 459 surnames. As a basic unit of the language
model we chose a phoneme which means that before
computing individual probabilities we had to perform a
phonetic transcription. Foreign names and surnames that
are not subjected to Czech phonetic transcriptions rules
were transcribed manually and saved into vocabulary of
exceptions. After the phonetic transcription we

computed probability of unigrams, bigrams and trigrams
according to equation (1). Results are shown in Table 1.
including the task perplexity and entropy.

Characteristics of training and test corpus
training test
number of names 20579 070 9 488}
number of phonemes in
vocabulljzl:ry V) 44 44]
junigrams (N) 174 692 140, 77 100
different unigrams (nr(.,.)) 44 431
E unseen unigrams (n0(.,.)) 0 1
& [singletons (nl(.,.)) 0 0
E |doubletons (n2(.,.)) 0 0
perplexity 19.22 19.03
entropy 4.26] 425
bigrams (N) 154 112095 67 612
different bigrams (nr(.,.)) 1392 852J
« [unseen bigrams (n0(.,.)) 544 1084
E, singletons (nl(.,.)) 35 101
& [doubletons (n2(.,.)) 13 60
perplexity 995 10.11
entropy 3.32 3.34
trigrams (N) 133532050, 58 124
different trigrams (nr(.,.)) 18 904/ 4999
« |unseen trigrams (n0(.,.)) 66280 80 185
Eu lsing!etﬂns (nl(.,.)) 1 198 1725
‘E |doubletons (n2(.,.)) 645 757
rplexity 4.70 4.54
tropy 223 2.18
Table 1.
6. EXPERIMENTAL RESULT

In the speech recognition system equipped by an
acoustic and alanguage model it is practically
advantageous to use different weights of the language
and the acoustic model. These weights can be defined by
two variables p a s. The word insertion penalty p is a

fixed value added to each token when it transits from the
end of one word to the start of the next. The grammar

scale factor s is the amount by which the language model
probability is scaled before being added to each
hypothesis as it transits from the end of the word to the
start of the next. These parameters can have a significant
effect on recognition performance and hence, some
tuning on development test data is well worthwhile.
Formulae for computing with parameters s and p:

10g(P(0, w,|w;)) =10g(P(O]wy)) + s - log(P(w, [w)) + p
@)
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where O is observation vector sequence generated by
Hidden Markov Model; w; and w; are phonemes and P is
a likelihood.

After the language model had been created we
performed several tests. The first test was performed
using 718 utterances. Each utterance consists of person
name and surname. From 718 utterances two sets A, B
were randomly chosen. Each of them contained 25
different utterances. Two training sets were constructed.
The first one (T1) is equal to the set A and the second
one (T2) is composes both sets A and B. The test set
contained all 718 utterances. From sets A and B the
baseforms were generated. The test set was recognized
on basis these baseforms. Results are shown in Table 2.
for the grammar scale factor s = 1 and the word insertion
penalty p = 30 000.

Number of baseforms 25 (T1)}] 2x25 (T2)

Number of utterances 718 718

Correctly recognized 554 601

Incorrectly recognized 164 117

|Correctly recognized [%] 77.16 83.70)

Incorrectly recognized [%] 22.84 16.30}
Table 2.

Following series of tests were performed with the same
set of 718 utterances. 25 utterances were always
randomly chosen (one for every name) and all the 718
utterances were subsequently recognized with various
values sand p. General results shown in Table 3. are
arithmetic mean of all individual tests.

s/p | 20000 | 25000 | 30000 | 35000 | 40000 | 50000
-1 ] 75.81 | 75.07 | 72.28 | 68.71 | 64.02 | 59.52
0] 7953 | 79.20 | 7591 | 74.74 | 70.98 | 63.37
1 ]79.02 | 7846 | 77.21 | 76.42 | 74.47 | 68.48
2| 76.04 | 7855 | 79.06 | 77.11 | 76.93 | 74.65

Table 3.

In the final test we tried how the system works for one
user. We recorded 200 utterances by one user
(4 utterances for each full name from the test A. From
200 utterances we randomly chose 25 utterances of
different names and for each utterance a baseform was
generated. The rest (175) utterances were recognized
with these baseforms. We executed two tests with
different training utterances. Results shown in Table 4.
are arithmetic mean of both the tests.

s/p | 20000 | 25000 | 30000 | 35000 | 40000 | 50000
0 94 93 92 90,5 88 84
1 93.5 92.5 93 95.5 91.5 87.5
21 995 | 975 | 915 89 89 90.5
Table 4.
7. CONCLUSION

We have presented a system for recognition and
automatic phonetic baseform generation. We used an
acoustic model and a language model with bigram
probabilities to constrain the transitions between
phonemes.

In conclusion, we believe that we have a viable
technique for automatic generation of phonetic
baseforms that give a good decoding accuracy with our
speech recognition system. This is particularly useful for
our telephony dialogue system where personalized
vocabularies are a must.

Experimental results show that the recognition based on
acoustic baseforms has a good accuracy. The highest
achieved accuracy (s=2, p=20000) for system
working with one user is greater then 99 %.

In the future we want to provide further improvements in
accuracy.
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