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ABSTRACT

The task of audio classification is streamlined if the audio
stream can be decomposed in real time into homogeneous
segments larger than the individual frame. If segment
morphology reflects the underlying audio type, classifier design
and training becomes more transparent and can directly exploit
real-world knowledge. The experiments presented here explore
real-time zero-crossing-based audio stream segmentation and
classification. We segment an un-edited audio stream from a
German-language radio program into three classes: speech,
speaker breathing and music, Features related to modulation of
the amplitude envelop are exploited to segment the audio stream
into homogeneous sub-syllable segments. The segments prove
useful for classifying the audio-stream, especially the speech
portions. We use features extracted from a zero-crossing-based
pseudo-spectrum to train a Gaussian classifier that classifies
audio content into the three categories. Qur results demonstrate
that our zero-crossing-based segmentation and classification
method is a viable one, yielding satisfactory performance in real
time.

1 INTRODUCTION

Progress of audio processing technologies has led to an
expanding role for audio as an information source and a
communication medium. The increasing importance of audio
data has inspired the vision that that audio should be just as
casily segmentable, indexable, searchable and even as
translatable as text. Motivated by this vision is the move away
from frequency-domain and other calculation intensive
approaches, wherever there are not justified by the task or the
medium.

This paper is an exploratory investigation in the direction of
real-time segmentation and classification of audio data. This
work was driven by two central insights. First, audio processing
does not have to take place on the frame level, but rather that
benefit is to be derived by matching the method to the medium.
In our experiments we use modulations in the amplitude
envelop to first decompose the audio stream into segments
motivated by signal morphology, which in the case of speech
turn out to be sub-syllables. Second, audio processing does not
have to take place in the frequency domain. We introduce a
pseudo-spectrum derived from the distribution of zero-crossings
and show that features can be extracted from it that yield
reliable classification into audio categories. We segment an un-
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edited audio stream from a German-language radio program into
three classes: speech, speaker breathing and music.

Our experiments draw motivation from the literature on
segmentation and classification based on larger-than-frame
segments. A two pass classification was introduced in [1]. In the
first pass, speech/non-speech boundaries were detected using a
reduced phoneme inventory and gender-independent acoustic
models. The second pass identified speaker changes, using only
the boundaries detected in the first pass as potential candidates.
Although this approach increased segmentation accuracy, it also
increased segmentation time.

Several approaches have decomposed speech into syllable

and syllable-like units. An automatic segmentation of speech
into syllable units based on the convex hull of the loudness
function in described in [2]. Relative loudness maximums are
interpreted as potential syllabic peaks and relative loudness
minimums as potential syllabic boundaries. A logal loudness
minimum separated from another local minimum by less than
100 ms may be insignificant, but a minimum of the same
magnitude which had no other minimums within 500 ms would
indicate a syllable boundary.

Automatic detection of syllable boundaries based on full-
band energy contour and voicing detection using modified
autocorrelation is described in [3]. The syllable boundary is
determined to be the point of minimum energy contour within
each portion of consecutive possibly unvoiced frames.

[4] describes a new representational format for speech, the
modulation spectrogram, that represents amplitude modulation
frequencies in the speech signal between 0 and 8 Hz, with the
peak at 4 Hz corresponding to modulation spectrum of speech.
The modulation spectrogram robustly extracts information
related with the syllabic segmentation of speech.

The literature on zero-crossing rate is a growing corpus, and
also served as an inspiration for our approach. Possibilities for
spectral analysis based on zero-crossing are described in [5]. In
[6] a spectral analyzer based on zero-crossing is demonstrated.
Using zero-crossing interval measurement for formant
frequency estimation in noise is presented in [7]. Experiments
on speech recognition in a noisy, real-world environment in
which the frequency information of the signal is obtained from
zero-crossing intervals are described [8]. In [9] experiments
which use gravity centers of energy as additional feature to the
classical set of MFCC in automatic speech recognition system
are described. These experiments demonstrate improved
recognition performance when gravity centers are computed
from zero-crossing intervals detected at the output of the filters
of an ear model.
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Using just zero-crossings for speech/music discrimination
has been investigated previously in [10]. Other research on
speech/music  discrimination and classification has used
temporal information from speech waveform and as well as
spectral information. Spectral information has include such
features as 4 Hz modulation energy, rolloff of the spectrum,
spectral flux and spectral centroid. In this paper we would like
to demonstrate that features like these can be extracted from a
zero-crossing-based pseudo-spectrum and used to classify and
audio stream with satisfactory accuracy.

In the next section of this paper, section 2, we describe our
zero-crossing-based downsampling of the time-signal and
present motivation for the approach. We introduce our method
for extracting sub-syllable segments by looking at modulations
in the amplitude envelop. We detail the calculation of the zero-
crossing-based pseudo-spectrum and the features we derive
from it. In section 4 we describe our classification experiments.
Section 5 presents conclusions and outlook.

2 PSEUDO-SPECTRAL ANALYSIS

2.1  Zero-crossing-based Smoothing

Assuming that signal is normalized, i.e. the mean has been
removed, we define zero crossings, th, n = 1,2,3..., as the times
at which the signal changes sign or is equal to zero. The
successive zerc-crossing intervals are defined as zy = ty — to,.
As discussed in [7] the successive zero-crossing intervals of
sinusoidal signal exhibit high consistency and are inversely
related to frequency. The signal resulting from the sum of more
than one sinusoidal component, however, may not satisfy this
principle. Usually the speech signal between two zero-crossings
has more than one sinusoid. To be sure that the representation
of speech signal as one sinusoid between two zero-crossings is
valid for the purpose of discrimination we have implemented
the method described in [12]. The audio signal is represented as
a sequence of successive zero-crossing intervals and the
maximal signal amplitudes for those intervals where amplitude
is positive and minimal amplitude for the intervals where
amplitude is negative. The signal is represented as a sequence
(z0.An), N=1,2,3,....
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Figure I. Comparison of original signal and recovered signals

An audio signal restored from this sequence retains
sufficient quality to be understood by a human listener, and
therefore holds good potential for discriminating speech, music,
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song, and other non-speech signals. Inconsistencies in the
relationship between frequency and zero-crossing rate in the
speech signal, remain well contained. From Figure 1 an
impression can be gained of exactly how close the original
speech signal is to the speech signal restored after zero-
crossing-based downsampling.

According to Kedem [5] the zero-crossing rate of repeatedly
differentiated series converges to its least upper bound. The
restored signal has the same zero-crossing rate as its derivative.
Since we are assured of an least upper bound, we are justified in
considering that in each successive interval we have only one
sinusoid and in using the inverse of the length of the interval as
a frequency of the signal in this interval,

22 Extracting larger-than-frame segments

The changes that are relevant for segmenting and classifying a
radio program, are not those that occur on a frame to frame, but
rather those which occur between some higher-level content
based units. Audio content processing can be streamlined if a
higher-level segment can be found, which is identifiable in the
signal, but whose morphology reflects underlying audio content.

Segments which are morphologically justified are also to be
homogeneous. We want to exploit facts about the audio stream
such as that a strain of music is never going Lo separale (wo
halves of a syllable of speech. We are interesied in
morphological properties of the signal that correspond to
detectable sections of the audio input. For breathing this might
be individual breaths, and for music, the notes. Here we
concentrate on extracting a basic unit for spoken audio, namely
the syllable. We find that sub-syllables, units that afg useful
since they never straddle syllable boundaries andtan be
identified reliably using the minima in the amplitude envelop of
the signal.

The signal is divided into frames, each 20 ms seconds long
with an overlap of 10 ms. For each frame we extract the
maximal non-negative amplitude from the set of amplitudes A,
n=1,2,3,.... corresponding to interval between successive zero-
crossing, zs, An N=1,2,3,.... On a new signal composed from
these maximom amplitudes we find the points which are local
minima. These are the boundaries of our larger-than-frame
units.

23  Deriving the Pseudo-spectrum

The zero-crossing-based pseudo-spectrum is calculated from the
restored signal described in sub-section 2.1 using the following
procedure. From each 20 ms frame (overlap 10 ms) we extract
the lengths of the intervals between successive zero-crossings.
Then extracted periods are converted into pseudo-frequencies,
by f = 1/z, where z is the length of the interval between
successive zero-crossings. For each interval between successive
zero-crossings we extract the amplitude that is maximal for the
interval with positive sign of the signal, and is minimal for the
interval with negative sign of signal. Then using 24 frequency
bands according to the Bark scale, we group frequencies that
correspond to one band together and then normalize all groups
using sum of all frequencies. As the result for each 20 ms frame
we have smoothed a pseudo-spectrum which can be deployed
for a range of discrimination tasks.

The resulting pseudo-spectrum is well smoothed, but retains
the discriminative features of the original speech signal. Figure
3 illustrates the pseudo-spectrum corresponding to the 16 kHz
waveform depicted in Figure 2. These ﬁgur&vnou‘vaie__me use



of the pseudo-spectrum distinguish voiced and unvoiced parts
of the signal and identify the syllabic modulation of the speech
signal. Figure 4 is the pseudo-spectrogram of a waveform in
which the speaker breathes berween words or phrases. The
duration of the breath is 100 ms. Once again, visual inspection
confirms that the pseudo-spectrum contains enough information
about the signal to allow a discrimination to be made.

Using the amplitudes which correspond to each zero-
crossing interval we calculate a value related to energy.

4 abs(z, *A )
ot sl

S approximates the square of the amplitude of the envelop
corresponding to interval Z,. We group together all S values
corresponding to the same Bark band and normalize these
values by dividing by total sum for all intervals. In this way we
produce a pseudo-spectrum representing the distribution of
energy with respect to frequency bands.

We use this pseudo-energy spectrum to calculate an
additional feature, the rolloff point. We define our rolloff point
to be the frequency below which 85% of the energy in the
spectrum is concentrated.

Additionally we use the centers of gravity of the Bark-
spectrum frequency bands, proposed in [9].

(1

CG= =— 2)

From the pscudo-spectrum we also calculate the frequency
corresponding to the maximum zero-crossing interval in each
frame. The final feature that we derive from the pseudo-
spectrum is the Euclidean distance between the pseudo-spectral
vectors of neighboring frames.

3 EXPERIMENTS

We cxperimented on data from our Kalenderblatt database,
which contains radio programs recorded from the Deutsche
Welle Kalenderblatr series and the accompanying transcripts.
The programs are five minutes in length and each contain about
650 running words. They are liberally interspersed with music
and other sound effects. Although each program is narrated by a
single speaker, many other voices are present in the form of
interviews and original sound footage. The radio programs were
downloaded from the Internet (http://www.kalenderblatt.de) and
resampled to 16 kHz. The corresponding text transcripts were
also downloaded and normalized. The database is described in
detail in [14]. Also in [14] is a description of the semi-
automatic alignment visualization tool with which we create
reference segmentations and segment labels for our
experiments.

For the exploratory experiments presented here, we
indiscriminately chose one 5-minute program for training and
one for testing. We segmented and labeled these with the semi-
automatic method down to the syllable level, also marking
breathing and music. In this way we generated high-quality
reference labels for training and testing. The duration of training
data for the experiments presented here is 5 minutes; the
duration of test data is also 5 minutes.

Figure 2. Waveform of speech signal. (20 ms [rame with
10 ms step represented on x-axis)

Figure 3: Pseudo spectrum for the waveform depicted in
Figure 2. (Bark-scale pseudo-frequencies vs. frames)

Figure 4: Pseudo spectrum for the waveform containing
speaker breathing (Bark-scale pseudo-lrequencies vs. [rames)
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We perform three evaluatory experiments with this data.
First we evaluate the larger-than-frame segmentation procedure
described in section 2.2 with which we decompose the audio
stream into sub-syllable units. Then we train the classifier and
classify the audio stream using frames as units. Finally we apply
the same classifier to the audio segmented into the sub-syllable
units.

We evaluate our larger-than-frame segmentation using the
segmentation scoring tools described in [13]. These tools are
based on dynamic programming alignment and were developed
for and have been successfully applied to video segmentation
evaluation. We compare our segmentation with the reference
syllable segmentation of the same signal. We set the tolerance of
the tool to 20 ms, which means that if the boundary
hypothesized by our segmentation method falls within 20 ms of
the reference boundary, the boundary is considered correct. 20
ms represents a conservatively narrow margin of tolerance,
since an average syllable is 250 ms in length. Our segmentation
scores 87.5% insertions and 12.5% deletions with respect to the
reference segments. This means that our segments in most cases
are proper sub-units of syllables and cross syllable boundaries
in only 12.5% of the cases. Given that correct syllabification in
German is partially a matter of convention, we feel that these
results indicate that our larger-than-frame segments are indeed
capturing a sub-unit that provides a useful link between signal
structure and audio content.

For classification we use a maximum likelihood multivariate
Gaussian classifier. The input vectors for the classifier consist of
the features extracted from the pseudo-spectrum (described in
section 2.3) plus their variances. These features are: average
energy, gravity centers of pseudo-frequency bands, rolloff point
of energy distribution, frequency corresponding to the longest
interval between successive zero-crossings present in frame,
Euclidean distance between pseudo-spectral vectors of
neighboring frames. The classifier was trained on one 5 minute
program and tested on the other.
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classified classified classified

as music as breath. as speech
music data 84.2% 3.7% 11.1%
breathing data 8.2% 89.2% 2.6%
speech data 25.6% 12.2% 62.2%

Table I: Classification on frames (20 ms, with 10 ms step)

Table 1 reports the results of classification using frames as
the units. Music and breathing are classified better than speech
using frame as the basic classification unit.

classified classified

as music as speech
music data 68% 32%
speech data 6% 924%

Table 2: Classification on sub-syllables (larger-than-frame)

Table 2 reports the results of classification using the sub-
syllable units. To score this classification, we look at which
frames are contained in the sub-syllable and see which class
label is associated with the majority of them in the reference
segmentation. Speech is classified better than music using the
sub-syllable units. We feel that this result reflects the utility of
choosing a larger-than-frame unit that is related to the
morphology of the andio content.

4 CONCLUSIONS

The zero-crossing pseudo-specirum proposed here has proven
itself to be a valuable source of features for real-time audio
classification and has been shown to allow effective
discrimination between speech, speaker breathing and music.
Further results suggest that larger-than-frame units enhance
classifier performance, but that they must be well-matched with
the audio content.

Future work will focus on identifying additional features
that can be derived from the pseudo-spectrum that might aid
classification of audio, particularly into classes above and
beyond the three we experiment with here. Finally, we hope that
further work will allow us to develop a larger-than-frame
segment that will be as useful for music and breath classification
as the sub-syllable units are for speech classification.
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