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Abstract: This paper addresses the problem of
finding a common structure to many deformed
samples of the same class. The algorithm used is the
multiscale  structure matching. We  have
experimented a new distance measure, based on the
curvature of the contour.

I. INTRODUCTION

Learning visual models from samples of the same
class is one of the central problems in pattern
recognition and computer vision. This paper addresses
the problem of generating a model from given
samples, using a multiscale convex/concave structure
of the shapes, and the extraction of the optimum scale
structure common to shape samples of the class.

There are many previous works in which shapes
are described by symbolic representations, which
means those parts and parts relationships are in the
form of attributed relational graphs.

The method described here does not need apriori
knowledge about object shapes, reduces the
computational complexity about graph models.

II. THEORETICAL
FRAMEWORK

A shape contour can be expressed as two periodic
functions C(t)=(x(t),y(t)), where x)y are the
coordinates along the contour. An evolved version of
this contour is defined using the convolution between
c(t) and the Gaussian kernel:

I'e=((X(u,0),Y(u,0)), ue(0,1)
X(n,0)=x(u)®g(u,0);

Y(u,0)=y(u) ®g(u,0); (1)
g(u,0) is the gaussian kernel.

The curvature along the contour is:
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where u is the normalized length along the contour,
and x,, yu, xuu, yuu, are the derivatives of the
functions x(t) and y(t).

The points where k(t,6)=0 are inflection points,
and the segments between them are convex/concave
structures.

The shapes can be represented as sequences of
segments that have some characteristics. In our case
these characteristics are the ratio I/L, and DKci, where

]; = the length of the segment

L = total length of the contour ,

DKci = the variation of the curvature along
the contour.

We consider two shapes A and B defined as two
sequences of segments:

A'=a," a,",...,a"y

Bk=b|k,b2k,....,ka
h and k are associated with two different scale
factor G}, Oy

Increasing the value of o, odd consecutive
segments can be replaced by one segment. For the two
shapes it can be two different scales for which there
exist an optimum matching according to a distance
measure defined between the two shapes.

The problem is to match segments of different
shapes by finding corresponding segment pairs
between them.

The matching procedure involves the definition
of a dissimilarity measure between a;, and b; segments
as:

T IDK® -DKE| -1

DK+ oK I +
where DK is the signed difference between the
maximum and the minimum value of curvature along
the I; segment.

We denote a sequence of (2n+1) consecutive
segments of a shape, a(i-2n|i and a sequence of
(2m+1) segments of shape B, b(-2m j).

We consider that, a(i-2n | 1) at the finest scale can
be replaced by a,".(segment i at scale h), and similarly
b(j-2m |j) with b*.(segment j of shape B, at scale k).

(2)
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The multiscale segment dissimilarity between a(i-2n |
i) and b(j-2m | j), can be formulated as:

D(a(i-2n | i) ,b(j-2m | j))=d(a,b}}+ 3)
+da(a(i-2n l i-->a")+ dg(b(j-2m l -->bjk)

The first term is the one to one dissimilarity between
segments a; and b;, and the others represent the cost of
replacing a(i-2n |i) with a; and b(j-2m |j) with b;.

Given many samples of the same class of shapes
we can find a common structure of segments.

We consider a shape A; within N samples. This
shape is partitioned into n; subsets (each subset
contains an odd number of segments). Then matching
shapes A, to A; is performed by finding a
correspondence between the two sets.

Pij:{ ﬂj‘“fj | W=l,ﬂ§j}
P; is a partioned segment family of sets.
ae P;; consists of one or an odd number of segments of
the finest scale on the shape contour. Similarly we can
define P;; as the family of subsets that best describe the
matching of A; by A;. In the case of N samples of the
same class, the matching is performed N(N-1)/2 times.

We consider the union of P;:

Q=UP

j1=1N
Q, is named a partially ordered set. The interpretation
for shape generalization is equivalent to find the
maximal elements in Q;. The maximal element ge Q; is
an element for witch there is no q° with qcq’€ Q..

ITII. EXPERIMENTATION

We have tested this method on deformed
industrial shapes made by a small number of segments
(<15). We have used the curvature for the dissimilarity
measure, reducing the computational effort.

The minimization of the criterion function (2) is
performed for a value of 6=5-7.

' The algorithm for obtaining pairs of segments
has 2 stage:

Firstly we match the segments using the
dissimilarity measure formulated in (2).

Then we calculate the dissimilarity between the
replaced segments (at the finest scale) and the
corresponding segment at the scale G.

In the second recognition stage the dissimilarity
used is in the form:

da(a(i-2n | )=a(d(a(i-2n |i-2n+ 1))+
+d(a(i-2n+1 | i-2n42))..... +d(a(i-1 ] 1)) ()

where w is a weighting factor.
A o value of 0.6 reduces the effect of noisy
contour.
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In the case of models generation, given N
samples of the same class, The matching procedure
used are described in the Fig. 1.

The model generation is performed in many
stages, and finally the class model M12.N is find. The
matching between samples uses the equation (2).

M123..N

Fig. 1 :

IV. CONCLUSIONS

The method of shape recognition using a
multiscale matching is suitable for deformed objects,
and very robust with respect to position, orientation
and scale change.

This method is computational less expansive than
others such as those based on the curvature scale space
which have the same objective.
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