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Abstract

We introduce a class of conjunctive structures of second
order for which the consistent labeling problem is solvable
in polynomial time. This result is generalized then to a
class of “maxmin” problems.

1. Introduction

The “consistent labeling” or “exact matching” problem
is usually introduced in following terms: An undirected
graph G is given with finite sets of possible labels for each
node. Furthermore for each edge of G constraints on la-
bel pairs are given . Such a structure is called consistent
if there exist allowable labelings of the nodes, i.e. label-
ings which satisfy all constraints. A well known example
is the colorability problem: A graph G is k-colorable if
there exists an assignment of the integers 1,2, ... , k, called
“colors” to the nodes such that no two adjacent nodes are
assigned the same color. Another well known example is
the 2-CNF satisfiability problem. A boolean expression is
said to be in 2-conjunctive normal form (2-CNF) if it is
the product of sums of at most 2 literals. It is satisfiable if
some assignement of 0’s and 1’s to the variables gives the
expression the value 1 (it is leaved to the reader to trans-
form this in a consistent labeling problem). Though we
supposed here that constraints are given only on pairs of
labels (i.e. on the edges of G) it is of course possible to
extend the consistent labeling problem considering con-
straints on k-tuples of nodes. An example is the k-CNF
satisfiability problem.

The necessity to have efficient algorithms for consis-
tent labeling arise from various fields in computer science.
Particularly we are interested in structural image recogni-
tion especially using two dimensional image grammars.
Suppose we consider images on a rectangular pixel lat-
tice with values from a finite alphabet. The aim is then to
describe subsets of images by means of two dimensional
grammars analogous to the description of string subsets
by means of formal (one dimensional) languages. Loosely
speaking we can imagine a regular image grammar in the
following way: The pixel values are called terminal sym-
bols and a second alphabet of nonterminal symbols is in-
troduced which serve as “interpretations” of local frag-
ments in the terminal image: We assign a subset of non-
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terminals to each local fragment occuring in images of the
desired set. These are the possible interpretations of the
fragment. Then constraints are introduced on adjacent
(e.g. horizontal and vertical) nonterminal symbol pairs.
Testing if a given image belongs to the grammar language
leads to a consistent labeling problem (in this context of-
ten called “exact matching”): For every fragment of the
given image we obtain a subset of possible nonterminal
symbols and have to assign one of these symbols to the
fragment so that all constraints are fulfilled (see the exam-
ple below). Of course this is only the first and “easiest”
problem in structural image recognition. A direct gener-
alization is the “best matching” problem: Given a grey
valued image we obtain only weights for each possible
terminal symbol in each pixel (and not a unigque terminal
symbol as before). The aim is then to find the symbol im-
age belonging to the grammar language which maximizes
some objective function e.g. the sum of weights or the
minimal occuring weight.

Despite the importance of the consistent labeling prob-
lem its long history (e.g. [7, 2, 4, 1, 5, 3]) lacks attempts
to find relevant subclasses of the problem which can be
solved in polynomial time.! The stochastic relaxation la-
beling introduced by A. Rosenfeld also doesn’t clarify the
problem. Previously one of us (M.LS.) investigated how
this problem does simplify in the case of not fully con-
nected graphs [6]. An algorithm was found, whose com-
plexity depends on the complexity of the graph G.2

In this paper we propose another approach for tackling
the problem: namely by restricting the class of used pred-
icates. We show how the exact matching problem and
the “maxmin” problem (a generalization thereof) can be
solved in polynomial time for a class of conjunctive struc-
tures.

2. Monotone conjunctive structures

Let G be a complete graph with nodes denotedby r € G. A
finite set S(r) of symbols is attached to each node r € G.
Furthermore a predicate ¥, on S(r) x S(r’) is given for
every pair (r,7’) of nodes (more pregisely: for every edge
of G). We call such triple X = (G,S,%) a conjunctive

'In general the exact matching problem is NP-complete.
2Unfortunately the algorithm also scales exponentially for complex
graphs.



structure of second order. A symbol field s on X assigns
a symbol s(r) € §(r) to each node r € G. A symbol field s
is said to be allowable if

Xrr (s(r),s(r')) =1

for every edge of G. A structure X is said to be consistent
if there exists at least one allowable symbol field on K. If
X' and X are conjunctive structures, then X' is called a
substructure of X if and only if G' = G, Vre G §'(r) C
§(r) and the predicates fulfil

Xer < X ls ()5 -

In case of equality X is called induced substructure of X
The kernel Ker( X)) of a conjunctive structure is defined as
the smallest substructure possessing the same allowable
symbol fields as X.

The “exact matching” or “consistent labeling” problem
implies to prove the consistence of a given conjunctive
structure or its substructures.

In the remainder we suppose that symbol sets S(r) are
ordered in structures under consideration. A subset / of
an ordered set S is called interval if

I={s€S|s <s< s}

with some sy, 52 € S. We write I; < b, if corresponding
inequalities hold for the boundaries of the intervals.

A conjunctive structure X = (G, S,Y) is called strong
monotone if 1-3 hold:

1. Every set S(r) is ordered.
2. The sets
S(rlr,s) = {s € S0) | 1ow(s,5) = 1}
are nonempty intervals in S(r).

3. The boundaries of the intervals S(r|r’,s’) are mono-
tonously increasing functions of ' i.e. S(r|r',s) >
S(r|7,s)) if s > 5.

5(”)

S(r)

Figure 1: Example predicate of a monotone structure

Remark 1 If 5,5, € () are consecutive in S(+’) then
from 2 and 3 follows that the union of the intervals
S(r|r',s))US(r|’,s,) is again an interval in S(r).
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We call a conjunctive structure monotone if the property 2
is weakened in so far as the intervals could be empty and
3 holds only for nonempty intervals. It is easy to see that
the predicates of a monotone structure could be written as

Xre (51,52) = g1(s1)%r (51,52)82(52)

where Y is a predicate of a strong monotone structure and
81,82 are arbitrary binary functions.

Remark 2 It is easy to prove that an induced substructure
of a monotone structure is monotone.

Suppose X is a conjunctive structure, (r,7,7") a triple
of nodes and s € §(r), ' € S(~) a pair of symbols with
X, (s,5') = 1. We say that there is a cycle through this
pair on the triangle (r,7,7") if there exists at least one
s" € S(r") such that

X (5,8") =1 and xpu(s,s") =1.

We call a structure cyclic if this holds for every allowable
pair of symbols on every triangle.

Lemma 1 Let X be a strong monotone and cyclic con-
junctive structure, Gy C G an induced subgraph and sy an
allowable symbol field on Gy. Then there exist at least one
allowable extension of sg on X.

Proof: We prove this by induction over size of the re-
maining graph. Let r be a node not contained in Gy. We
consider the sets S(r|r’,s0(r’)) for all ¥ € Gy. They are
intervals in S(r). If their intersection is nonempty, the
symbol field can be extended on r. Suppose in contrary
that their intersection is empty. Then there exists a pair of
nodes ry,r; € Gy so that

S(rlr1,80(r1)) N S(rlr2,80(r2)) = 0.

But this contradicts the assumption: there must be at least
one cycle through so(r1), so(r2) on the triangle (ry,r,,7).
O

Let X = (G,S,x) be a monotone structure whose con-
sistence is to be proved. Suppose X is consistent. If
there exists an edge (r,7’) and a symbol s € S(r) such that
S('|r,s) is empty, none of the allowable symbol fields can
have value s in r. Therefore all allowable symbol fields
of X are also allowable symbol fields of the induced sub-
structure with §’'(r) = S(r) \ s. We call this restriction of
the symbol set “removing of a symbol with no incident
symbol edges”. Suppose furthermore that there exists a
triple (r,7’,7") of nodes and a pair of symbols 5o € S(r),
5o € S(r’) and X, (s0,55) = 1 with no cycle through s,
on (r,”,r"). Then all allowable symbol fieldgof X are
also allowable symbol fields of the substructure with

. _Jo if s =59 and 5’ = sJ,,
Xer (5:8) = {x,,,:(s,s’) else.



We call this restriction of the predicate “removing of non-
cyclic symbol edges”. It is clear that both operations pre-
serve the kernel and therefore can be applied iterative.

The algorithm for proving the consistence repeatedly
applies the following three steps:

1. Tterative removing of symbols with no incident sym-
bol edges. The obtained induced substructures of
X are selves monotone (see Rem. 2). This remov-
ing stops if the obtained induced substructure X’ be-
comes strong monotone.

2. Choose a node rg € G. For every edge (r,7’) with
nr' € G| = G\ rg remove all symbol edges which
are noncyclic on the triangle (rg,r,7”’). We obtain a
substructure X" C K.

3. Remove node ry i.e. restrict the structure X on G;.
We denote the resulting structure X;.

This algorithm stops either if a symbol set becomes empty
or if the resulting graph has one node and a nonempty
symbol set on it.

Theorem 1 Let X = (G,S,%) be a monotone structu-
re. The algorithm stops with a one node graph and a
nonempty symbol set if and only if X is consistent.
Proof: In order to prove this theorem we show that X
is monotone and that each allowable symbol field on X
can be extended on XK. (The converse is true because
it is evident that X" contains Ker(%).) So let us first
show that K" is monotone. The structure X" yields from
the strong monotone structure X’ by removing noncyclic
symbol edges. Let (ro,r,”’) be a triple of nodes. Consider
the sets

S(FIns;m) = |

50€S(ro|rs)

S("'|ro,s0)

for every s € S(r). It is easy to see that they are intervals
in §(r’) (see Remark 1). Moreover: their boundaries are
monotonous increasing functions of s. This holds also for
the intersections

S(r'|r,s:r0) NS(F|r,5)

if they are nonempty. Therefore X" is monotone. Sym-
bol edges on the edges (rg, r) are not removed during the
transition from X’ to X". So the proof of Lemma 1 can
be repeated here to show that each symbol field on X can
be extended on X". O

Example 1 In this example we show a monotone struc-
ture arising from a simple image grammar. Consider im-
ages on a rectangular pixel lattice with values black and
white. Suppose the image set under consideration con-
sists of all images containing a “horizontal” black curve of
thickness 1 pixel. Horizontal means that every column of
the image contains at most one black pixel. Curve means

Figure 2: Images belonging to the grammar language
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Figure 3: Images not belonging to the grammar language

¥,

[4
that black pixels are connected in the 8-neighbourhood.
A simple grammar describing this set of images can be
constructed as follows: The alphabet of terminal symbols
is {b,w} which stand for black and white. The alphabet
of nonterminal symbols is {B,C,A} which stand for “be-
low”, “curve” and “above”. The fragments of the terminal
image are the pixels itself. A pixel with terminal sym-
bol (w)hite can be assigned to the nonterminal symbols
B,A. A pixel with terminal symbol (b)lack-only to the
nonterminal symbol C. For horizontal adjacent pixels the
allowed symbol pairs are

{(8,8),(B,C),(C,B),(C,C),(C,A),(4,C), (4,A)}

i.e. there are only two forbidden pairs: (B,A) and (A, B).
For vertical adjacent pixels the allowed symbol pairs are

(s)-(a)- (). ()}

For every other pixel pair all symbol pairs are allowed.
Taking now the order {B,C,A} it is easy to see that the
corresponding structure is monotone. Therefore the exact
matching problem for this grammar is solvable in polyno-
mial time. O

3. The maxmin problem
In this section we consider the “maxmin” problem-a gen-

eralization of the “exact matching” problem. Let G be a
complete graph with symbol sets S(r) attached to each of
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its nodes as before. Given a real valued function f,» on
8(r) x S(r’) for every edge of G. Then maxmin problem

is
max min .y (s(),s(”)

where S(G) denotes the set of all symbol fields. Let §
be the space of all functions f: § x § —+ R with the prop-
erty: The binarization of f with an arbitrary threshold is
a monotone predicate. We denote by Bef the binarization
with treshold &:

(BJ)(S)={1 i

0 else.
It is easy to verify the following eqalities:
Bemin(f, g] = (Bef)(Beg)

and
Bemax min[f(s,s'), g(s,5")] =
mf'x (Bef)(S,S’)(ng)(S,S”)

Since we have shown that the space of monotone predi-
cates is closed under the operations in the right hand sides
of the above equations, it follows that so is § under the
operations in the left hand sides.

We suppose that all weight functions f,» of the maxmin
problem under consideration are in §. Let rg be a node of
G and G’ = G\ rg. The maxmin problem can be trans-
formed into

max min [msngo(SO,s' ):Fer(s)]

¢€8(@)

with

Fo(so,8') = minfmr(so,s'(r))

Fol@)=_min 1,/ (8(r).8(7)).
Furthermore

ﬂ1§XF0(307sl) = mszx ’Em-ln fm,-(So,S‘(r))
(”,)G;?xa, - U“n[fror 50,8 (’)) fror’(-‘o’s (f'))]
= min b (0)4(7)

holds because the sets {s € S| f(s,s’) > €} are intervals
in §. The functions h,, are elements of § and finally we
obtain

frr (8(r),8(r)) =
Jor (8(r),5())

max
s€S(G) (r,r’)eG xG

-'es(G') (n‘)GG xG'

with f,» = min[f,.,h,.] which are elements of §. We
have shown therefore how to reduce the maxmin problem
on G to an equivalent problem on G’ = G\ ro. By repeat-
ing this step we can solve the problem in polynomial time.
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Conclusion

We have shown that “consistent labeling” and “maxmin”
problems can be solved in polynomial time for monotone
conjunctive structures of second order. Although the algo-
rithms presented here are sequential they can be reformu-
lated easily in a parallel distributed manner. The parallel
versions generate in addition the kernel for the consistent
labeling problem and the best symbol field for the maxmin
problem respectively.
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