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VY craTTi pO3BUBAETHCS METOJ 0AaraTOPiBHEBOI'O aBTOMATHYHOTO PO3Ii3HABAHHS MOBJICHHEBOTO
CHTHAJIy, IO TMOYaTKOBO OyB 3ampOINOHOBAHWHN s (JIGKTUBHUX MOB 3 BUIBHUM TIOPSIIKOM
ciligyBaHHS ciiB. Po3rmisiHyTo 1Ba piBHI: Ha MEpLIIOMY piBHI 3aCTOCOBYETHCSA IMO(GOHEMHE
pO3Mi3HaBaHHs, PE3YbTAT SIKOTO MiANAETHCS MOCT-TPOLECHHTY Ha IPYroMy piBHI. 3alporioHOBaHa
MOJIeTIb BpPaxOBY€ aKycTW4HI 1 (DOHETWYHI O3HAKW, JIEKCUKOH 1 OCOOJHMBOCTI CIIOHTaHHOTO
MOBJIEHHA. ONUCYETHCS CMOCIO OLIHIOBAHHS MapaMeTpiB MOCT-TPOIIECOPA.

Kniouosi cnosa: nogponemne posniznasanms, nocm-npoyecune pesyivmamy po3nizHaéanHs, ¢hiex-
MUBHI MOBU, CHOHMAHHE MOBIIeHH S, NePemB8openHs (honema—epagpema.

The paper presents advances in a multi-level automatic speech understanding approach that is ini-
tially developed for highly inflective languages with relatively free word order. Two levels are con-
sidered. On the first level it is applied a phoneme recognizer, which output is post-processed at the
second level. The proposed model of post-processing involves acoustic and phonetic features to-
gether with lexicon and spontaneous speech peculiarities. A way to estimate the post-processor pa-
rameters is described.

Keywords: phoneme recognition, recognizer output post-processing, highly inflective languages,
spontaneous speech, phoneme-to-grapheme conversion.

B craTtee pa3zBuBaeTCs METOJ MHOTOYPOBHEBOI'O aBTOMAaTHYECKOTO PACIO3HABAHUS PEUYEBOIO CHUT-
HaJla, KOTOPBIA MepBOHAYAILHO ObUI MPEUIOKEH JUIs (PIEKTUBHBIX S3BIKOB CO CBOOOJIHBIM HOPSA-
KOM CJIEJOBaHMsI CJIOB. PacCMOTpEHBI /1Ba YPOBHSI: Ha MEPBOM YPOBHE MpPHUMEHsIETCS M0QOHEMHOE
pacro3HaBaHUe, pe3yabTaT KOTOPOro IOABEPraeTCs MOCT-IPOLECCUHTY Ha BTOpOM ypoBHe. [Ipen-
JIO’)KEHHAs! MOJIENb YUUTHIBAET aKyCTUYECKHE U (POHETUUYECKHUE MPU3HAKH, JEKCUKOH U 0COOEHHOCTH
CTMOHTaHHOM peun. ONMUCHIBaeTCs Croco0 OLEHUBAHUS apaMEeTPOB MOCT-IPOIeccopa.

Kniouesvie cnosa: onemnoe pacnosmwasanue, nOCmM-npoyeccune pe3yabmama pacno3HAGAHUS,
prexkmugnbvie A3bIKU, CHOHMAHHAS pedb, npeobpasosanue ponema—epagema .

Introduction. In accordance to the multi-level multi-decision speech
understanding system structure discussed in [1] an approach when continuous speech
is firstly recognized as a phoneme sequence and then this phoneme sequence is
recognized and understood as a word sequence and meaning appears constructive.

Despite some criticism of this approach, since the best method of speech signal
understanding consists in its simultaneous recognizing and understanding,
constructing such a multi-level system is a real possibility to distribute the research
job between experts in acoustics, phonetics, linguistics and informatics. Moreover,
the phoneme recognition must not be rigid but controlled in such a way to yield the
best result of understanding.
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Apparently, the multi-level speech understanding structure looks as if
particularly corresponding for advancing in speech-to-text conversion for a series of
highly inflected languages with relatively free word order, and Slavic ones are among
them.

If the model retains applicability for languages with other statistical
characteristics it means that this approach can be taken to create common
implementation of ASR for a wide set of languages in combination with the approach
targeting to remove language dependency in speech processing.

In previous research it were analyzed several modifications of the basic
structure and described advances in phoneme recognition [2, 3]. In this work the
focus is on phoneme recognition result processing with the purpose to extract the
pronounced words.

In Section 1 we describe the general structure for a three-level multi-decision
speech understanding system. In Section 2 some formalization for the post-processor
Is given. Section 3 is dedicated to the parameter estimation proceeding from the
examples.

1. General structure

The general structure of the considered multi-level multi-decision speech
recognition technique is shown in Figure 1. It is consists of three parts. These are
Generalized Phoneme Recognizer, Recognizer Post-Processor and Continuous
Speech Interpreter.

Generalized Phoneme Recognizer produces N>>1 best recognition responses
under free phoneme order or conditioned with constrains on phonemic or morphemic
level [3]. Then Phoneme Recognizer Post-Processor analyzes these phoneme
sequences in order to generate N2>>1 possible word sequences. By these word
sequences a Speech Interpreter makes a decision about the speech understanding
response via Natural Language Knowledge.

Knowledge about Speech Phoneme-to-Grapheme Natural Language Knowledge
Acoustics, Phonetics, Phonology, Convertor, Lexicon, (Wordnet, Syntax,
Speech Produ ction Model, Concordance, Intonation Semantics, Pragmatics,
Individual Speel ch Peculiarities Modlels External World Models)
v ' v
Connected- . N>>1 N2>>1 . Speech
Speech G;Eg;ilrf:d Best RI; }:;?)nelil;zr Best Continuous Understanding
Signal to be R izer Phoneme >P t an " Word = Speech Result
Recognized ccognize Sequences OSt-Frocesso Sequences Interpreter
Ist Level 2nd Level 3rd Level

Figure 1. Three-Level Speech Recognition System Structure

To focus on Second Level, which tries to extract hypothetical word sequences
by phoneme sequences, we must find correspondences between phoneme sequences
observed by Phoneme Recognition Post-Processor and the pronounced words
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composed of, actually, hidden phonemes that could be either misrecognized by First
Level or mispronounced by a speaker or distorted by the acoustic channel or noise.

2. Post-processing modeling
One of the Generalized Phoneme Recognizer level result is N>>1 best observed

phoneme sequences cDOrQr :(go{ -y ,...,qo(gr), r=1:N where Q" is length of the

r-th observed sequence. Moreover, as the result of the First Level, each phoneme ob-
servation ¢, might be accomplished with information about its duration d , proba-

bility 47" and may be other parameters like energy, pitch movement etc. Therefore,

actually, as the output of First Level, we consider sequences of certain phonetic
events rather than phoneme sequences.

At Second Level we construct a post-processor that must extract, for all qﬁorQr :

r=1:N, total N1>>1 hidden phoneme sequences &Uorérl =(¢//1r1,t//£1,..., wit ., z//(g%l),

ri=1:N1, wyeW¥Y=® and correspond them to word sequences
Jerrz —(jlrz,jzrz,...,j{z,...,jgrzzj, r2=1:N2, N2>>1 and ji?eJ where J is a

word dictionary. To avoid loosing the actual word sequence, N2>>1 recognition re-
sponses are taken.
Thus, we interpret  observed phonemic  event  subsequences

qﬁrs U (¢US 4 (pus L2 (Purs j Us-1 <Us, as a transformed hidden s-th phoneme

l//ks from the k-th word regular transcription joq (l//kl y/kz,. ,y/ks,. ,://{qlk ) The
probability of that that an observed subsequence
k-1

IS a realization of the hidden k-th word transcription

j0qk = (l//ﬁal//lg"“’ Vie ... ://qul ) assigns to the product of independent distortions

! S, = ((”Srk_ﬁl’(psrk_l“ (osrk ) where (sk—Sk-1) = | is length of the observation,

maximized by hidden phoneme w ! bounds {us}:

P((ng—lSk/jOQk) maXHP( Us 4Ug /l// ) (1)

S}Sl

Here each factor expressed as P(®@./y) is equal to 0 if

= (@u+1, Qus2, ..., @) does not correspond to the hidden y, otherwise it is com-
puted as a function of both a ®,, to w mapping occurrence frequency and acoustic
parameter normal laws.

IHOykmueHe moderntoeaHHs1 cknadHuUx cucmem, sunyck 7, 2015 41



Phoneme recognition output post-processing

Each sequence of phonetic-acoustic events is processed with the introduced fil-
ter by means of dynamic programming as it is shown in Figure 2. Here we observe 4
phonemes (phonemic events), ¢i, ¢, @ and ¢4, produced by Generalized Phoneme
Recognizer. The observed phonemes can be generated by one or more transcriptions
that consist of hidden phones w1, y», s and ys where 1 generates one phoneme, y»
generates a sequence of two phonemes, w3 generates a sequence of three phonemes
and ya generates an “empty” phoneme, which models phoneme skipping. Solid lines
show deterministic transitions between hypothetically generated phoneme events.
Dotted lines denote permissible transitions between hidden phonemes. These transi-
tions are conditioned by pronunciation dictionary, word sequence and spontaneous
speech peculiarities models [4].

Internal states !!Transition states
v, v,

e

Figure 2: Graph example for the phoneme recognition output post-processor
generative model.

An example of how transitions between hidden phonemes are controlled is
shown in Figure 3 where speech signal segment corresponding to the pronounced
Ukrainian word nosepHeéTe (you will turn) has been converted to the phoneme
sequencepovarneltyl.

In the example we construct a directed graph each node of which contributes to
hypothetical word beginnings based on extracted hidden phoneme sequences. Thus,
the second recognized phoneme o corresponds to hidden o, ol, e or y, which
potentially belong to words starting with no, ne and nu according to phoneme-to-
grapheme conversion [5].

A node corresponding to the last symbol in the valid word contains a complete
word marked with (=) that prohibits or () that admits word extension to left or right.
Mark (1) designates symbol sides where neither valid word may begin or end. To
write out a consecutive prospective word we concatenate symbol segments with
coinciding marks (') or () until a valid word composed. Dimmed nodes designates
no further valid transition exists.
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As follows from Figure 5, three word sequences can be extracted: nosap He
TN, noBepHeTe and no BapHa TW. These hypotheses, alongside with integral criteria,
are to be passed to Third Level where the final decision is made considering syntax
and semantic knowledge.

Note that using the described technique we may model spontaneous speech
feature like word breaks or false-starts in accordance to ideas described in [4] without
vocabulary inflation. For doing this we introduce eventual starts of new words even
after the incomplete word written out.

hidden
phonemes hypotheses

P P ' M

o o, 01, ey '0'\ nO_\ e In! \
w \' % !B!\ B! _B_ = _nue_ '8!
é a a,al,e lal le! lal _a_ / _nuea_
g r r nosap_ Ip! Ip!
3
< n n H! IH! IH!
S !

el el,a le! He le! BapHa_

t t 7! IT!

Y A y ™= noBepHeTe_

Figure 3: Example of permissible transitions between hidden phonemes
controlled with a dictionary.

3. Parameter estimation

As it follows from (1) we actually consider two sub-levels: phonemic and
lexical. Such decomposition can be interpreted so that phonemic sub-level is
responsible for hypothetical hidden phoneme sequence generation with no reference
to the vocabulary. Further, once a hypothetical phoneme has been appended to a
partial sequence, the lexical sub-level checks the updated partial phoneme sequence
for validity referring to hypothetical (partial) word sequences.

To estimate phonemic sub-level parameters we use a training set obtained by
the phoneme recognizer for sentences with known text.

In Figure 4 we show an example of the phonemic sub-level model structure.
Here we admit that a hidden phoneme , can be observed in form:

M, =y v, w) we?uo )

By means of this model a hidden phoneme is able to generate:
e aphoneme with the name may not match the hidden phoneme name;
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e sequences of two phonemes both of which may not match the hidden
phoneme;
e sequences of three phonemes where the central phoneme matches the
hidden phoneme;
e an empty phoneme (*), which means that the hidden phoneme is skipped.
To weaken the proposed constrains (2), we may consider generated sequences
of three phonemes where neither phoneme name matches the hidden phoneme name
and longer sequences may be considered as well.

begin end

Figure 4. Generalized structure for phonemic sub-level model estimation.

Each model needs to be initialized with phoneme names and to be updated with
acoustic features like length and criteria. We propose to initialize the models in a way
that allows for reducing the total amount of models and keeping all prospective
phoneme sequences.

Table 1 illustrates an example of parameter estimation for hidden phones by
the sample of Ukrainian sentence: mun He rnyxi (we aren’t deaf). The reference
phoneme sequence is: pau m yl n e h | u khl il sp, where pau and sp means
silence that is always hidden at sentence boundaries. The example is based on real
phoneme recognition results. For each hidden phoneme we construct one or more
models. Thus, proceeding from the 4" to 7" observed phonemes we construct models
for hidden phonemes n and e that generate n and n+y1 for n and y1-e and e for e.

Table 1
Phonetic level model hypotheses initialization
Observation Model
No Length = Criteria Name Name Hypotheses
1 51 -22.15 pau pau pau
2 16 -30.19 m m m
3 9 -34.10 yl yl yl
4 8 -30.01 n n n, n+yl
5 3 -33.17 yl
6 4 -32.71 e e yl-e, e
7 8 -28.27 h h h, h+l
8 6 -31.31 I I [, 1+l
9 7 -35.32 I u l, *
10 21 -27.98 khl khl kh1, I-kh1,
kh1+i, I-kh1+i
11 11 -29.78 i
12 18 -26.95 il il i1, I-il
13 15 -24.31 tl sp sp
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Already initialized models just update their statistics for length, criterion and
occurrence. Factor P(®../w) from (1) is estimated proportionally to the occurrence of
phoneme sequence @,, generated by hidden phoneme y. After all models (2) have
been initialized by the training sample, the expectation-maximization iterations [6]
are applied until the criterion (1) converges or another stop condition reached.

Conclusion. The proposed technique allows for finding the regularities by
which hidden phoneme sequences transform to observed phoneme event sequences. It
Is shown that, beside highly inflexed languages, spontaneous speech recognition may
benefit from multi-level multi-decision approach application. The deficiency of each
post-processor is its activation after the end of the basic process. So the ways to
integrate the post-processor scheme in the computation of nodes of phoneme
recognition graph should be considered.
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