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Abstract. This paper presents an approach to word morphological decomposi-
tion based on lexical stress modeling. Word segmentation quality is estimated
by a hidden variable that assigns the lexical stress. The formulated segmentation
criterion is based on a training set of words with manually pointed stresses and
a large text corpus. The described search algorithm finds one or more segmen-
tations with the best likelihood. Given arguments confirm the necessity to dis-
tinguish stressed and unstressed vowels in the phoneme alphabet for Ukrainian
speech recognition systems. The developed tool allows to assign primary lexi-
cal stress in unknown words. Experimental research is described and results are
discussed.
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1 Introduction

The phenomenon of lexical stress plays significant role for many languages. Prosodic
features like duration, pitch, and loudness are used to describe phonetic distinctions for
stressed word segments. So any text-to-speech system must implement lexical stress
prediction. Letter-to-sound rules practically always work for vowels under lexical stress
even for highly spontaneous pronunciation manner. And this property might be useful
for spontaneous speech recognition tasks.

In [1] authors assume that morphological decomposition is required for lexical
stress prediction particularly for cases where a local context is insufficient. Moreover,
presenting words as a sequence of reasonable segments or morphemes is a key to model
the word formation and to strive beyond vocabulary limitations particularly in speech
understanding systems. Known methods of morphological decomposition relies solely
on orthography [2], [3]. In our research, lexical stress prediction and morphological
decomposition are considered as a result of the same process through which phonetic,
syntactic and semantic hidden features can be discovered from word spelling.

In the next section we consider motives, prerequisites and possible applications,
in Section 3 we describe segmentation procedure formalization and implementation,
Section 4 is devoted to data description, in Section 5 we report and discuss experimental
results followed by Conclusion.
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2 Motivation

In Ukrainian, stress position is irregular and it can be changed even within forms of
the same word. Fortunately, the available electronic lexicography system contains more
than 1.8 million words with manually assigned lexical stress covering all valid word
forms [4]. The web-based basic text corpus contains 275 million unchecked word sam-
ples, which makes a vocabulary for about two million words. Relatively to the lexicog-
raphy system, half of which is detected in the basic corpus, OOV words make 2.5%. At
least 200 thousand more words allow for OOV reduction to less than 0.5%. So stress
prediction is a way to assign lexical stress for the large amount of both new and known
words.

The reason to introduce stressed vowels to the text-to-speech system is obvious due
to necessity to meet a human perception of duration, pitch, and loudness. In speech
recognition, feature extraction models are mostly invariant to prosodic features. How-
ever, we believe that introduction of both stressed and unstressed vowels to the phoneme
alphabet, at least for Ukrainian, is essential due to phonetic, lexical, and acoustical facts.
Stressed vowels normally act as distinctive phonemes changing word grammatical func-
tion and meaning that we observe for more than 5% of words in the basic text corpus.
In English language, stress shift, normally, causes changes in phonetic content of the
pronunciation (compare: récord and recórd). Therefore, such argumentation might be
rather inapplicable for a specific language.

Grapheme-to-phoneme conversion methods like [5] could be directly used also for
modeling stress, however they have no provisions to account for the structural properties
of stress. Here, rather than modifying an existing algorithm we prefere to construct a
model concentrated on stress properties and then convert the stressed text to phoneme
sequences by means that allow for counting specific pronunciation properties provided
by the method that needs about 30 find-replace-and-step rules for Ukrainian [6].

2.1 Application to speech recognition

To explore the acoustical side of lexical stress we estimated phoneme model parameters
considering stressed and unstressed vowels as different phonemes and inspected dissim-
ilarities particularly by means of the HMM visualization tool [7]. Following Fig. 1 we
can see the difference between models for unstressed and stressed phonemes of “a” and
“i” trained on 40 hour multi-speaker speech corpus for Ukrainian [8].

The presented central state contains 32 GMMs estimated in MFCC feature space
accomplished with energy coefficient and mean subtraction that makes total 13 coef-
ficients. The dotted line corresponds to a zero value. Visually, a stressed model looks
like a subset for most coefficients. Overlaps rather than inclusions with respective coef-
ficients in the stressed model are proper in cases like the 5th coefficient for “a” and the
first coefficient for “i”. More HMMs are available from the tool’s web-page.

Analyzing transition matrices, we can see that diagonal values corresponded to
emitting states are 1.52 times greater for stressed models that confirms the essential
difference in duration.

Introducing both stressed and unstressed vowels is relatively small overhead for
Ukrainian language since only 6 vowel phonemes are distinguished: a, e, y, i, o, and u.
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Fig. 1. HMM visualization for Ukrainian unstressed and stressed monophones a and i

However, such extension is more expensive for phoneme alphabets containing signifi-
cantly more vowels (due to diphthongs, nasalization, etc.).

Perhaps, the most convincing argument for stressed vowel models became the anal-
ysis of Ukrainian speech recognition preliminary experiments. A multi-speaker and a
single speaker > 40 hour training sets were used to learn models for both versions of
the phoneme alphabet (49 and 55 monophones). For word recognition we applied a
bi- and a trigram language models and a free order grammar was used for syllable and
phoneme recognition. To make the results comparable we ignored the stress information
from recognized word and phoneme sequences. In all cases we observed a 12 − 23%
improvement relatively to the word/phoneme error rate. Therefore, our concern about
possible confusion of stressed and unstressed phonemes was rather exaggerated.

The benefit of morphological decomposition is a possibility to present the entire lex-
icon with a limited set of morpheme level segments irrespective to their correspondence
to morphemes in a sense of classical linguistics.
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3 Methodology

3.1 Lexical stress-based word segmentation model

A training vocabulary W contains words with assigned attributes like a lexical stress.
Each word w from the vocabulary W can be decomposed into a sequence of symbols
q(w) = (q1, q2, . . . , qKw

) taken from an alphabet of letters or phonemes Q.
We consider subsequences of q(w) as segments of a certain segmentation s(w) among

all valid segmentations S(w) for the word w. The i-th segment of segmentation s(w)

s
(w)
i = (si1, si2, . . . , siL(w)

i
) (1)

together with other segments of s(w) cover the entire q(w) without overlaps that is for
any w ∈W ∑

i
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where I(·) returns a segment item index within q(w). The constrain for the largest seg-
ment length, Lmax, determines a model order. More segmentation constrains might be
introduced, e.g. restriction on running primarily stressed syllables.

Uniting all segments of valid segmentations for all words belonging to the vocabu-
lary W we form a training set of segments

S =
⋃

w∈W, s(w), i

s
(w)
i (4)

and consider each segment in this set, si, with no relation to words.
A stress level, θ(w)

k = {0, 1, 2}, assigned to each symbol forms a corresponding
attribute sequence θ(w) = (θ1, θ1, . . . , θk, . . . , θKw

). We assume the stress level other
than zero can be assigned to symbols that introduce a syllable, at least potentially. Nor-
mally, these are vowels that may be accomplished with specific consonants like “r” in
Slovenian [3]. For other symbols the stress level is not applicable and is always equal
to zero. Stress level values may be limited only to 0 and 1 that means only a primary
lexical stress is considered. On the contrary, we may introduce more values correspond-
ing to symbol attributes that might be hidden in spelling like reduction, lengthening and
modifiers, as well as symbol attribute combinations. Thus, we generally refer to θ(w) as
an attribute sequence for corresponding symbols in w.

Obviously, the returned index in (3) is the same within θ(w), which subsequences are
assigned to s(w)

i . Attribute sequences assigned to each segment of s(w) segmentation,
in turn, form a set Θ(w).

We can estimate a probability of the attribute sequence θ given a segment si observ-
able in the training set:

P (θ|si) ≈
c(si, θ)

c(si)
(5)
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where c(si, θ) is a count of segments si with stress assignment defined by a stress
indication vector θ and c(si) is a number of si occurrence. All counts are taken from
the text corpus for words included in the stress vocabulary. For the segments with low
occurrence a smoothing technique should be applied.

Finally, we search through all valid segmentations s(w) and attribute sequences θ
that satisfy the expression:(

ŝ(w), Θ̂
)
= argmax
s(w), Θ(w)

∏
i,θ

P
(
θ|s(w)

i

)
(6)

For known words, θ is determined for each segment s(w)
i uniquely, otherwise, all

valid attribute sequences are being searched.
Thus, to carry through morphological decomposition we introduced a segmentation

model based on features, hidden in word spelling, like lexical stress. However, not all
obtained segments are valid morphemes due to potentially more strict morpheme con-
strains like presence of at least one vowel. Therefore, unifying such a segment with
adjacent one is a way to compose a valid morpheme.

4 Segmentation graph analysis

We constructed a dynamic programming graph where finding the shortest trajectory is
equivalent to the search (5). Each input symbol introduces a set of valid pairs (seg-
ment, attributes), which are nodes on the graph where the partial criterion is accumu-
lated. Connections between nodes correspond to valid segmentations. Memorizing N
prospective arrows entering to nodes we can extract N -best word segmentations.

In Fig. 2 an example of one-best stress prediction search (6) is shown for a proper
name Obama missing from the basic Ukrainian vocabulary. The word is represented as
concatenation of all valid character segments where the largest segment length is lim-
ited to five. Input items are down-cased letters accomplished with the word boundary
symbol “|”. Each input item introduces a set of valid segments with attributes. For com-
pact presentation we show only the result of the attribute application. Thus, a notation
“obAm” in column 5 means the segment (o, b, a, m) with the attribute vector (0, 0, 1,
0). Potentially optimal arcs are either shown or coded with the name of previous node.
Indicated partial criteria are log probability based. The optimal trajectory, respective
nodes and criteria are bold.

In the example we illustrate two running stressed syllables forbidding: in column
7 the segment “mA” follows the segment “a” rather than “obA”. As far no constrains
for the segment content are introduced, segments may contain a single consonant like
“b” in column 3. This is the way to guarantee a successful search (6) for any word.
The system may decide that such a segment and an adjacent segment may belong to
the same morpheme depending on constrains given by the expert. In accordance to
morphology knowledge, for Ukrainian language, only the first and the last morphemes
may consist of consonants solely. To compose a formally valid morpheme we may
append the segment “b” to the preceding segment preferring more frequent morphemes
and coming to Ob-áma. We can see that a foreign word has been approximated with
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native morphemes. The model updated with rather correctly stressed new word samples
learns new morphemes, which make linguistically more justified decomposition of the
considered word and its forms possible: Obám-a, Obám-y, etc.

Fig. 2. Stress prediction for an out-of-vocabulary word “obama”

4.1 Implementation

To implement the described word segmentation algorithm a set of basic three tools has
been developed. Currently, these tools operate only with primary stress information.

The first tool, putstress, prepares the data necessary for estimation of probabilities
eq:stressAttrBySegmentProb by input data and knowledge base, word frequency vocab-
ulary and, optionally, corrected homograph frequency proportions. For each word the
tool tries to retrieve records about stress position and stores found words accomplished
with stress-mark and frequency. Found homographs are saved with frequencies updated
in accordance to their corrected proportions. An expert may correct more proportions
and run the tool again.

The second tool, guessstress, implements the search procedure (6) extractingN−best
sequences of segments with corresponding attributes. A frequency vocabulary of words
with assigned stresses is the source to estimate probabilities for hypothetical symbol
subsequences.

Finally, the prep_stressvcb tool forms a stress vocabulary by the extracted segments.
Several additional tools allow for extracting various information from input data, esti-
mated models, and segmentations. All modules are written in Perl language.

5 Data

The stress dictionary is extracted from the electronic lexicography system subset con-
taining 151 962 lemmas, including over 10 thousand names, that makes 1.90 million
word forms [4]. Due to the shared spelling an actual word form the vocabulary con-
sists of 1.83 million words that have different either spelling or primary lexical stress
position.
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The basic text corpus is derived from a hypertext data downloaded from several
websites containing samples of news and publicity (60%), literature (8%), encyclope-
dic articles (24%), and legal and forensic domain (8%). To be noted that the data down-
loaded from news websites contains numerous user comments and reviews, which we
consider as text samples of the spontaneous speech. A text filter, used for text corpus
processing, provides conversion of numbers and symbolic characters to relevant let-
ters, removing improper text segments and paragraph repetitions. Hereafter, we refer
to the basic corpus as 275M corpus. In accordance to the corpus summary shown in
Table 1, we observe 6.64 word forms per lemma in average, whereas this relation is
twice greater, 12.3, within the dictionary [4]. Adding to the vocabulary 200 000 most
frequent words we reduce OOV to less than 0.5%.

Table 1. Basic text corpus 275M summary

Words Sentences
Vocabulary

OOV Homographs
All words Known words Known lemmas

275 288 408 1 752 371 1 996 897 801 040 120 554 2.51% 16 729 476

Words that have two or more valid stress positions, referred as homographs, take
6% of the average text. However, homographs may occur with quite different frequency
that may considerably affect occurrence for certain segments. Therefore, an expert may
correct occurrence proportions in the homograph dictionary containing over 14 000
spellings.

6 Experiments

Known and OOV words were evaluated separately. The evaluation of known words
was made in order to learn how a large part of the vocabulary can be coded without
explicit lexical stress information. The largest model order, Lmax, was set to five, and 4-
best segmentations were analyzed to form a stress vocabulary. The expert has corrected
occurrence proportions in the homograph dictionary for 500 most frequent spellings.

The system detected about one million pairs (segment, stress). Frequencies for dif-
ferent segment lengths are shown in Table 2.

Table 2. Detected segment counts

Segment length, L 1 2 3 4 5

Item count 46 1781 35280 233816 721575

Occurance (million) 2115.652 1848.766 1581.879 1314.993 1070.579

215 000 segments were used to predict a lexical stress for words in 275M text cor-
pus. Stress position for less than 1% known words was detected incorrectly. Stress de-
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tection for 5 000 OOV words was incorrect in 21.1% words or 5.3% syllables. However,
over 50% of incorrectly stressed words have strong foreign origins.

Perhaps, the most interesting is the case of stress moving with some morphological
derivations. Checking derivations from photo/photography (fóto, fotóhraf, fotohráfija,
fotohrafíchnyj, fotohrafuváty and their forms) we found that incorrect stress has been
assigned only in one derivation (fotohráf).

7 Conclusion

The proposed morpheme level segmentation model allows for simultaneous extraction
the features generally ignored in word spelling. However, these features are hypothetical
and a word context must be used to choose either right stress position or letter modifiers
or their absence that is typical for homographs. The segment level context introduction
is a way to further model improvement.

The model refinement is possible in expectation-maximization manner, especially
with a slight supervising for stress correction between iterations. Future research should
also concern a model order, letter modifiers and phonemic input, as well as more lan-
guages should be considered.
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