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Abstract 
The paper presents advances in a multi-level automatic speech 
understanding approach that is initially developed for highly 
inflective languages with relatively free word order. Two 
levels are considered. On the first level it is applied a syllable-
based grammar phoneme recognizer, which output is post-
processed at the second level. The described model of post-
processing involves acoustic and phonetic features together 
with lexicon. The ways to select a set of sub-word units like 
syllables and multispeaker corpus used in experimental 
research are considered. Experimental results, problems and 
future research are discussed.  
Index Terms: syllable recognition, recognizer output post-
processing, highly inflective languages, phoneme-to-
grapheme. 

1. Introduction 
In accordance to the multi-level multi-decision speech 
understanding system structure discussed in [1] an approach 
when continuous speech is firstly recognized as a phoneme 
sequence and then this phoneme sequence is recognized and 
understood as a word sequence and meaning appears 
constructive.  

Despite some criticism of this approach, since the best 
method of speech signal understanding consists in its 
simultaneous recognizing and understanding, constructing 
such a multi-level system is a real possibility to distribute the 
research job between experts in acoustics, phonetics, 
linguistics and informatics. Moreover, the phoneme 
recognition must not be rigid but controlled in such a way to 
yield the best result of understanding. 

Apparently, the multi-level speech understanding 
structure looks as if particularly corresponding for advancing 
a creation of dictation machines and spoken dialog systems 
for a series of highly inflected languages with relatively free 
word order, and Slavic ones are among them. 

If the model retains applicability for languages with more 
statistical characteristics it means that this approach can be 
taken to create common implementation of ASR for a wide 
set of languages in combination with the approach targeting to 
remove language dependency in speech processing [2]. 

In previous research at the 1st level we considered the 
Generalized Phoneme Recognizer which produced N>>1 best 
sequences of phonemes accomplished with acoustic 
estimations under condition of free phoneme order. At the 
second level, the Generalized Word Recognizer post-
processed the output of the previous level. It showed 
promising experimental results on a single speaker database 
for isolated word recognition.  

The next obvious step to extend the research is 
introducing a multispeaker database. At the same time we 

intended to integrate the lexicon in post-processor graph node 
computing. The latter is considered as a way to reduce 
number of decisions for the post-processor. The problem of 
selecting a speech pattern on the level is a subject for this 
research as well. 

In this paper we consider a modification of the three-level 
multi-decision speech understanding system. The structure of 
this system is shown in Figure 1. It is consists of three parts. 
These are Generalized Sub-Word Unit (Syllable) Recognizer, 
Recognizer Post-Processor and Continuous Speech 
Interpreter.  

The Generalized Syllable Recognizer produces N>>1 best 
recognition responses under free (or relatively free) syllable 
order grammar. Then the Syllable Recognizer Post-Processor 
analyses these phoneme sequences in order to generate 
N2>>1 possible word sequences. By these word sequences a 
Speech Interpreter makes a decision about the speech 
understanding response via Natural Language Knowledge. 

In Section 2 we justify the selection of sub-word units for 
the 1st level. In Section 3 formalization for the post-processor 
is given. In Section 4 we describe the data and knowledge 
base used for recognition. Section 5 is dedicated to 
experimental research.   

2. Sub-word Unit Selection 
In previous works to produce the output of the first level it 

was used a free grammar phoneme recognizer [1]. Despite the 
fast implementation, robastness of the latter is far from 
desirable, specifically for the multispeaker case. Syllables are 
considered as alternative sub-word units which still weakly 
depends on a dictionary.  

Two ways of syllable selection are analyzed: rule-based 
and open syllables. 

Rule-based syllable selection follows heuristics 
postulating the placement of syllable boundaries in 
dependence on coinciding phonemes. Open syllables end with 
a vowel or a phoneme-pause. Data-driven syllables are in 
scope of interest as well but not implemented yet. 

The syllables have been extracted automatically by the 
rate dictionary of 137640 words. Although syllable order is 
free, this is not so for open syllables: syllables ending with a 
phoneme-pause always follow a syllable ending with a vowel. 

Table 1 illustrates that syllable-based grammar 
significantly improves the phoneme recognition score (up to 
1.7 times) comparing to free phoneme order recognition for 
isolated words. Average length of Ukrainian word is 7,43 
phonemes and maximal occurred is 20 phonemes. In all cases 
recognition done by means of Julius-Julian [3] is performed in 
real time, which is approximately equal for the considered 
types of syllables. We should also notice that rule-based 
syllables look more preferable. 



Table 1. Phoneme accuracy in dependence of the sub-
word unit type for Ukrainian test samples. 

Test sample Sub-word unit 
type 

Amount 
of units 

Phoneme 
accuracy 

11000 words monophone 55 46.0 
11000 words rule-based syllable 9436 79.5 
11000 words open syllable 4966 78.3 
100 sentences monophone 55 49.3 
100 sentences rule-based syllable 9436 56.8 
100 sentences open syllable 4966 55.5 
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Figure 1: Graph for phoneme observation models in a training sample.  
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Figure 2: Graph for the post-processor. 
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Here each factor P(Φµν/ψ) is equal to 0 if Φµν = 
= (ϕµ+1, ϕµ+2, …, ϕν) is not associated with the hidden ψ, 
otherwise it is computed as a function of both a Φµν to ψ 
mapping occurrence frequency and acoustic parameter normal 
laws.  

Each sequence of phonetic-acoustic events is processed 
with the introduced filter by means of dynamic programming 
as it is shown in Figure 2. We observe 4 phonemes (phonetic 
events) produced by the Syllable Recognizer under the 
condition of three hidden phonemes presented by their 
acoustic-phonetic models (APMs). The observed phonemes 
can be replaced with 1 to 3 observed phonemes respectively 
and a hidden phoneme that is observed as an empty phoneme 
(omitted). There dotted lines denote inter model transitions 
provided by the grammar. Solid lines show internal 
deterministic transitions.  

Lexicon part of the post-processor provides constrains on 
grammar and performs the final phoneme-to-grapheme 
conversion including word boundaries. 

Therefore, the N>>1 best phoneme sequences of the first 
level are converted to N2>>1 word sequences.  

The parameters of probabilities (1) that are also APM 
parameters are estimated by training samples in accordance to 
[4]. In Fig. 3 we illustrate a graph of APM prototypes 
extraction for the recognizer output ‘pau k s1 o o pau’, under 
conditions of pronounced word of ‘pau ts1 o h o1 pau’ (‘of 
this’ in Ukrainian). The selected trajectories are shown in 
solid lines and a permissible but not selected trajectory is in 
dashed line. The following phonemic descriptions are 
extracted for prototypes: 

1:(PAU, k / pau, 4), 2:(PAU, k / pau, 5), 3:(PAU / pau, 6); 
4:(k / 1, ts1, 7), 5:(k, s / 2, ts1, 8), 6:(s / 3, ts1, 9); 7:(s, O / 3, 
e1, 9), 8:(o / 4|5, O, 9); 9:(∅ / 6|7|8, h, 11); 10:(o / 6|7|8, h, 
12); 11:(o / 9, o1, 13); 12:(∅ / 10, o1, 13); 13:(PAU / 11|12, 
pau). 

Here in brackets before the slash a phoneme sequenced 
replacing a model phoneme is indicated. Each phoneme from 
the sequence is associated with the model state and a 
capitalized phoneme is associated with a state which 
associated phoneme matches with the observed one. From the 
right of slash a model phoneme name and adjacent model 
prototypes instances, if applicable, are denoted. Additionally, 

a probability to each model prototype is assigned. 
Note, acoustic data of observations is updated for each 

prototype to build the global model iteratively or by purging 
less probable models. 

4. Data and Knowledge Base 
Data and knowledge base includes a Ukrainian speech corpus 
for estimation of parameters for acoustic and acoustic-
phonetic models (APMs) and a lexicon as well.  

We used the Ukrainian multi-speaker speech corpus that 
is in stage of its formation. Currently it contains above 30 000 
word realizations and thousands of sentences from about 100 
speakers living in different regions of Ukraine. The samples 
keep the phoneme rate proportions and are phonetically 
balanced [5]. 

A lexicon contains about 2 millions of word forms that 
correspond to 151000 of basic forms (lemmas). Actually these 
lemmas produce above 3 millions of word forms but many of 
them have same orthography and pronunciation. 

On basis of the lexicon and a 250 MB text corpus we 
generated a word rate dictionary of 157000 words. 

The module of phoneme text to orthographic text 
conversion uses 22 generalized rules of n-gram mapping and 
refers to the whole lexicon. Actually, on the stage of 
computing nodes on the graph (Figure 1) this module can be 
replaced with a phoneme sequences hash (2- and 3-grams) 
that occurred inside words. 

5. Experiments 
The experiment was divided into stages of (1) train and 
control sample preparation, (2) phoneme training, (3) syllable 
recognition (4) post-processor parameters estimation (5) post-
processor testing. 

For phoneme training, spoken samples were taken from 
the Ukrainian multi-speaker speech corpus. We considered 
isolated words for the phoneme acoustic model parameters 
estimation. Totally we took about 19858 word samples, and 
147 445 phone samples, except a phoneme-pause, from 70 
speakers.  

The alphabet chosen contains 55 basic phonemes 
including both stressed and non-stressed versions of vowels, 
palatalized versions for all but two consonants and a 
phoneme-pause. Occurrences of each non-pause phoneme in 
the training text lied between 30 (palatalized ‘sh’ and ‘zh’) 
and 1200 for non-stressed ‘o’. No short pause model was 
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Figure 3: Graph for phoneme observation models in a training sample.  



provided as far the training sample includes only isolated 
words. 

Acoustic models were trained and refined by means of 
HTK [6] for each of 55 monophones, particularly taking into 
account acoustic variability and occurrence of the phoneme. 
Obtained phoneme models have three states and 4 to 12 
Gaussian mixtures.  

Syllable recognition was accomplished by means of 
Julian [3] for two sets of syllables: open-syllables and rule-
based syllables with respective grammars in accordance to 
Section 2.  

The output of syllable recognizer including phoneme 
segmentation and criterion was used to estimate parameters of 
acoustic-phonetic models (APMs). We used speech data from 
a single speaker not included in phoneme acoustic models 
training. The words selected for data is a result of the rate 
dictionary scanning from the top and taking words containing 
new triphones. Totally 8000 of such words were recorded and 
first 3000 are recorded twice. We estimated different amount 
of models as indicated in Table 2. 

Before testing the post-processor we adjusted its lexical 
parameters: constrains on vowel stress were alleviated and 
word sequence output was allowed. In all experiments a full 
vocabulary was used (2 mln. word forms). 

Post-processor was tested on different sets of isolated 
words, though output was allowed as N2-best word 
sequences. 

Table 2. Results of post-processing procedure. 

Syllable 
type 

APM 
training 
corpus 

Total/used 
APMs Test corpus N2 WER 

% 

Rule 5000 3700/3300 6000 words 5 4.7 
Open 5000 3900/3300 6000 5 5.2 
Rule 5000 3700/3300 6000 7 4.5 
Open 5000 3900/3300 6000 7 4.8 
Rule 11000 7500/7000 2100*3 5 4.9 
Open 11000 7900/3300 2100*3 5 5.1 
Rule 11000 3700/3300 100 sentences 5 18.2 

 
It follows that the post-processing accuracy is about 95% 

for isolated words. Significant degradation on sentences is 
caused by numerous short words with high criterion. The 
penalty on inter word transitions might improve the situation. 

6. Conclusion 
The considered model is actual for highly inflected languages 
with relatively free word order and Slavic languages are 
among them.  

More adequate acoustic model for speech recognition is a 
phoneme-triphone model since the co-articulation factor is 
considered. The phoneme-triphone model operates with |Φ|3 
generative grammars and calculation grows up to |Φ|2 times 
comparing to the monophone model, besides, processing a 
phoneme-triphone grammar contains even more constrains so 
additional computations are taken. Therefore, it is expedient 
to choose N up to |Φ| and even more to attain comparable 
memory and computation expenses.  

The problem remains of how to guaranty that the optimal 
solution is not lost in multiple decisions. 

The deficiency of each post-processor is its activation 
after the end of the basic process. So the ways to integrate the 
post-processor scheme in the computation of nodes of syllable 
recognition graph should be considered. 

Data-driven syllables or alternative sub-word units are the 
target of future research. 
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